1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use std::{collections::BTreeMap, fmt, str::FromStr};

use cranelift_entity::{entity_impl, EntityRef};

pub trait IntoBytes {
    fn into_bytes(self) -> Vec<u8>;
}
impl IntoBytes for Vec<u8> {
    #[inline(always)]
    fn into_bytes(self) -> Vec<u8> {
        self
    }
}
impl IntoBytes for i8 {
    #[inline]
    fn into_bytes(self) -> Vec<u8> {
        vec![self as u8]
    }
}
impl IntoBytes for i16 {
    #[inline]
    fn into_bytes(self) -> Vec<u8> {
        self.to_le_bytes().to_vec()
    }
}

/// A handle to a constant
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Constant(u32);
entity_impl!(Constant, "const");

/// This type represents the raw data of a constant.
///
/// The data is expected to be in little-endian order.
#[derive(Debug, Clone, PartialEq, Eq, Default, PartialOrd, Ord, Hash)]
pub struct ConstantData(Vec<u8>);
impl ConstantData {
    /// Return the number of bytes in the constant.
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Check if the constant contains any bytes.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Return the data as a slice.
    pub fn as_slice(&self) -> &[u8] {
        self.0.as_slice()
    }

    /// Append bytes to this constant
    pub fn append(mut self, bytes: impl IntoBytes) -> Self {
        let mut bytes = bytes.into_bytes();
        self.0.append(&mut bytes);
        self
    }

    /// Grow the size of the constant data in bytes to `expected_size`, zero-extending
    /// the data by writing zeroes to the newly-added high-order bytes.
    pub fn zext(mut self, expected_size: usize) -> Self {
        assert!(
            self.len() <= expected_size,
            "the constant is already larger than {} bytes",
            expected_size
        );
        self.0.resize(expected_size, 0);
        self
    }

    /// Attempt to convert this constant data to a `u32` value
    pub fn as_u32(&self) -> Option<u32> {
        let bytes = self.as_slice();
        if bytes.len() != 4 {
            return None;
        }
        let bytes = bytes.as_ptr() as *const [u8; 4];
        Some(u32::from_le_bytes(unsafe { bytes.read() }))
    }
}
impl FromIterator<u8> for ConstantData {
    fn from_iter<T: IntoIterator<Item = u8>>(iter: T) -> Self {
        Self(iter.into_iter().collect())
    }
}
impl From<Vec<u8>> for ConstantData {
    fn from(v: Vec<u8>) -> Self {
        Self(v)
    }
}
impl<const N: usize> From<[u8; N]> for ConstantData {
    fn from(v: [u8; N]) -> Self {
        Self(v.to_vec())
    }
}
impl From<&[u8]> for ConstantData {
    fn from(v: &[u8]) -> Self {
        Self(v.to_vec())
    }
}
impl fmt::Display for ConstantData {
    /// Print the constant data in hexadecimal format, e.g. 0x000102030405060708090a0b0c0d0e0f.
    ///
    /// The printed form of the constant renders the bytes in big-endian order, for readability.
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::LowerHex::fmt(self, f)
    }
}
impl fmt::LowerHex for ConstantData {
    /// Print the constant data in hexadecimal format, e.g. 0x000102030405060708090a0b0c0d0e0f.
    ///
    /// The printed form of the constant renders the bytes in the same order as the data.
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if !self.is_empty() {
            if f.alternate() {
                f.write_str("0x")?;
            }
            for byte in self.0.iter().rev() {
                write!(f, "{byte:02x}")?;
            }
        }
        Ok(())
    }
}
impl FromStr for ConstantData {
    type Err = ();

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let s = s.strip_prefix("0x").unwrap_or(s);
        let len = s.len();
        if len % 2 != 0 {
            return Err(());
        }
        // Parse big-endian
        let pairs = len / 2;
        let mut data = Vec::with_capacity(pairs);
        let mut chars = s.chars();
        while let Some(a) = chars.next() {
            let a = a.to_digit(16).ok_or(())?;
            let b = chars.next().unwrap().to_digit(16).ok_or(())?;
            data.push(((a << 4) + b) as u8);
        }

        // Make little-endian
        data.reverse();
        Ok(Self(data))
    }
}

/// This maintains the storage for constants used within a function
#[derive(Default)]
pub struct ConstantPool {
    /// This mapping maintains the insertion order as long as Constants are created with
    /// sequentially increasing integers.
    ///
    /// It is important that, by construction, no entry in that list gets removed. If that ever
    /// need to happen, don't forget to update the `Constant` generation scheme.
    constants: BTreeMap<Constant, ConstantData>,

    /// Mapping of hashed `ConstantData` to the index into the other hashmap.
    ///
    /// This allows for deduplication of entries into the `handles_to_values` mapping.
    cache: BTreeMap<ConstantData, Constant>,
}
impl ConstantPool {
    /// Returns true if the pool is empty
    pub fn is_empty(&self) -> bool {
        self.constants.is_empty()
    }

    /// Returns the number of constants in this pool
    pub fn len(&self) -> usize {
        self.constants.len()
    }

    /// Retrieve the constant data given a handle.
    pub fn get(&self, id: Constant) -> &ConstantData {
        &self.constants[&id]
    }

    /// Returns true if this pool contains the given constant data
    pub fn contains(&self, data: &ConstantData) -> bool {
        self.cache.contains_key(data)
    }

    /// Insert constant data into the pool, returning a handle for later referencing; when constant
    /// data is inserted that is a duplicate of previous constant data, the existing handle will be
    /// returned.
    pub fn insert(&mut self, data: ConstantData) -> Constant {
        if let Some(cst) = self.cache.get(&data) {
            return *cst;
        }

        let id = Constant::new(self.len());
        self.constants.insert(id, data.clone());
        self.cache.insert(data, id);
        id
    }

    /// Traverse the contents of the pool
    #[inline]
    pub fn iter(&self) -> impl Iterator<Item = (Constant, &ConstantData)> {
        self.constants.iter().map(|(k, v)| (*k, v))
    }
}