1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
use std::{
collections::{BTreeMap, VecDeque},
rc::Rc,
};
use midenc_hir::{
self as hir,
pass::{AnalysisManager, RewritePass, RewriteResult},
Block as BlockId, Value as ValueId, *,
};
use midenc_hir_analysis::{BlockPredecessor, ControlFlowGraph, DominatorTree, Loop, LoopAnalysis};
use midenc_session::{
diagnostics::{IntoDiagnostic, Report},
Session,
};
use smallvec::{smallvec, SmallVec};
use crate::adt::ScopedMap;
/// This pass rewrites the CFG of a function so that it forms a tree.
///
/// While we technically call this treeification, the CFG cannot be fully converted into a
/// tree in general, as loops must be preserved (they can be copied along multiple control
/// flow paths, but we want to preserve the loop structure in the CFG).
///
/// The treeify transformation concerns itself with any block B which has multiple predecessors
/// in the control flow graph, where for at least two of those predecessors, the predecessor is
/// always visited before B, if control flows through both. This is a slightly less restrictive
/// conditon than the dominance property, but is very much related - the primary difference being
/// that unlike dominance, what we are capturing is that the predecessor block is not along a
/// loopback edge. It is quite common for a predecessor block to always be visited first in the
/// CFG, while not dominating its successor: consider an if/else expression, where control splits
/// at the `if/else`, and rejoins afterwards, the code in the final block where control is joined
/// can only be reached after either the `if` or `else` block has executed, but neither the `if`
/// nor the `else` blocks can be considered to "dominate" the final block in the graph theoretical
/// sense.
///
/// The actual treeification process works like so:
///
/// 1. For each block B, in the postorder sort of the CFG, determine if B has more than one
/// predecessor P, where P appears before B in the reverse postorder sort of the CFG. a. If
/// found, treeify the block as described in subsequent steps b. Otherwise, ignore this block and
/// proceed
/// 2. For each P, clone B to a new block B', and rewrite P such that it branches to B' rather than
/// B.
/// 3. For each successor S of B:
/// a. If S is a loop header, and S appears before B in the reverse postorder sort of the CFG,
/// then it is a loopback edge, so the corresponding edge from B' to S is left intact.
/// b. If S is a loop header, but S appears after B in the reverse postorder sort of the CFG,
/// then it is treated like other blocks (see c.)
/// c. Otherwise, clone S to S', and rewrite B' to branch to S' instead of S.
/// 4. Repeat step 2 for the successors of S, recursively, until the subgraph reachable from B
///
/// Since we are treeifying blocks from the leaves of the CFG to the root, and because we do not
/// follow loopback edges which escape/continue an outer loop - whenever we clone a subgraph of
/// the CFG, we know that it has already been treeified, as we only start to treeify a block once
/// all of the blocks reachable via that block have been treeified.
///
/// In short, we're trying to split blocks with multiple predecessors such that all blocks have
/// either zero or one predecessors, i.e. the CFG forms a tree. As mentioned previously, we must
/// make an exception for loop headers, which by definition must have at least one predecessor
/// which is a loopback edge, but this suits us just fine, as Miden Assembly provides control flow
/// instructions compatible with lowering from such a CFG.
///
/// # Examples
///
/// ## Basic DAG
///
/// This example demonstrates how the DAG of a function with multiple returns gets transformed:
///
/// ```text,ignore
/// blk0
/// |
/// v
/// blk1 -> blk3 -> ret
/// | /
/// | /
/// | /
/// v v
/// blk2
/// |
/// v
/// ret
/// ```
///
/// Becomes:
///
/// ```text,ignore
/// blk0
/// |
/// v
/// blk1 -> blk3 -> ret
/// | |
/// | |
/// | |
/// v v
/// blk2 blk2
/// | |
/// v v
/// ret ret
/// ```
///
/// ## Basic Loop
///
/// This is an example of a function with multiple returns and a simple loop:
///
/// ```text,ignore
/// blk0
/// | -------
/// v v |
/// blk1 -> blk3 -> blk4 -> blk5 -> ret
/// | /
/// | /
/// | /
/// v v
/// blk2
/// |
/// v
/// ret
/// ```
///
/// Becomes:
///
/// ```text,ignore
/// blk0
/// | -------
/// v v |
/// blk1 -> blk3 -> blk4 -> blk5 -> ret
/// | |
/// | |
/// | |
/// v v
/// blk2 blk2
/// | |
/// v v
/// ret ret
/// ```
///
/// ## Complex Loop
///
/// This is an example of a function with a complex loop (i.e. multiple exit points):
///
/// ```text,ignore
/// blk0
/// |
/// v
/// blk1
/// | \
/// | blk2 <-----
/// | | |
/// | blk3 |
/// | / \ |
/// | / blk4--
/// | / |
/// vv |
/// blk5 blk6
/// ```
///
/// Becomes:
///
/// ```text,ignore
/// blk0
/// |
/// v
/// blk1
/// | \
/// | \
/// | blk2 <---
/// | | |
/// | v |
/// | blk3 |
/// | | \ |
/// | | blk4--
/// | | |
/// v v v
/// blk5 blk5 blk6
/// ```
///
/// NOTE: Here, when generating code for `blk5` and `blk6`, the loop depth is 0, so
/// we will emit a single `push.0` at the end of both blocks which will terminate the
/// containing loop, and then return from the function as we've reached the bottom
/// of the tree.
///
/// ## Nested Loops
///
/// This is an extension of the example above, but with nested loops:
///
/// ```text,ignore
/// blk0
/// |
/// v
/// blk1
/// | \
/// | blk2 <-------
/// | | | |
/// | blk3 | |
/// | / \ | |
/// | / blk4-- |
/// | / | |
/// vv v |
/// blk5<- blk6-->blk7-->blk8
/// | ^ |
/// | |_____________|
/// | |
/// |__________________|
/// ```
///
/// We have two loops, the outer one starting at `blk2`:
///
/// * `blk2->blk3->blk4->blk2`
/// * `blk2->blk3->blk4->blk6->blk7->blk2`
///
/// And the inner one starting at `blk6`:
///
/// * `blk6->blk7->blk8->blk6`
///
/// Additionally, there are multiple exits through the loops, depending on the path taken:
///
/// * `blk2->blk3->blk5`
/// * `blk2->blk3->blk4->blk6->blk7->blk8->blk5`
/// * `blk6->blk7->blk8->blk5`
///
/// After transformation, this becomes:
///
/// ```text,ignore
/// blk0
/// |
/// v
/// blk1
/// | \
/// | blk2 <-------
/// | | | |
/// | blk3 | |
/// | | \ | |
/// | | blk4-- |
/// | | | |
/// v v v |
/// blk5 blk5 blk6-->blk7-->blk8
/// ^ | |
/// |_____________|_|
/// |
/// v
/// blk5
/// ```
///
/// During codegen though, we end up with the following tree of stack machine code.
///
/// At each point where control flow either continues a loop or leaves it, we must
///
/// * Duplicate loop headers on control flow edges leading to those headers
/// * Emit N `push.0` instructions on control flow edges exiting the function from a loop depth of N
/// * Emit a combination of the above on control flow edges exiting an inner loop for an outer loop,
/// depending on what depths the predecessor and successor blocks are at
///
/// ```text,ignore
/// blk0
/// blk1
/// if.true
/// blk2
/// while.true
/// blk3
/// if.true
/// blk4
/// if.true
/// blk2 # duplicated outer loop header
/// else
/// blk6
/// while.true
/// blk7
/// if.true
/// blk2 # duplicated outer loop header
/// push.0 # break out of inner loop
/// else
/// blk8
/// if.true
/// blk6 # duplicated inner loop header
/// else
/// blk5
/// push.0 # break out of outer loop
/// push.0 # break out of inner loop
/// end
/// end
/// end
/// end
/// else
/// blk5
/// push.0 # break out of outer loop
/// end
/// end
/// else
/// blk5
/// end
/// ```
#[derive(Default, PassInfo, ModuleRewritePassAdapter)]
pub struct Treeify;
impl RewritePass for Treeify {
type Entity = hir::Function;
fn apply(
&mut self,
function: &mut Self::Entity,
analyses: &mut AnalysisManager,
session: &Session,
) -> RewriteResult {
let cfg = analyses.get_or_compute::<ControlFlowGraph>(function, session)?;
let domtree = analyses.get_or_compute::<DominatorTree>(function, session)?;
let loops = analyses.get_or_compute::<LoopAnalysis>(function, session)?;
// Obtain the set of all blocks we need to check for treeification in a new vector.
//
// We must do this because as we treeify the CFG, we will be updating it, as well
// as all of the analyses, such as the dominator tree, so we can't iterate it at
// the same time as we do treeification.
//
// Additionally, this set never changes - we are visiting the function bottom-up,
// so we only start to treeify a block once all of the blocks reachable via that
// block have been treeified. As a result, the tree reachable from B is already
// treeified.
let to_visit = domtree.cfg_postorder().to_vec();
// This outer loop visits all of the original blocks of the CFG postorder (bottom-up),
// and is simply searching for blocks of the function which meet the criteria for
// treeification.
//
// The inner loop is responsible for actually treeifying those blocks. This
// necessarily has the effect of mutating the function, and therefore requires
// us to recompute some of the analyses so that we can properly determine how
// to handle certain blocks in the portion of the CFG being treeified, namely
// loops (via loop headers).
//
// Loops require special handling, as during treeification we typically will be
// cloning blocks that belong to the portion of the CFG rooted at the block being
// treeified. However, if we are treeifying a block that belongs to a loop, we do
// not want to clone along control flow edges representing continuation or breaking
// out of an outer loop. On the other hand, if we reach a loop that is only reachable
// via the block being treeified, we do want to copy those, as each branch of the tree
// will need its own copy of that loop.
//
// To handle this, we require the ability to:
//
// * Identify loop headers (which requires the loops analysis)
// * Identify the reverse postorder index of a block (which requires the dominator tree)
//
// The dominator tree requires the control flow graph analysis, and the loop analysis
// requires the dominator tree - as a result, each time we modify the CFG, we must also
// ensure that all three analyses reflect any effects of such modifications.
//
// However, this would be very expensive to compute as frequently as would be required
// by this transformation. Instead, since the transformation is essentially just cloning
// multiple copies of various subgraphs of the original CFG, we can use the analyses of
// the original CFG as well, by mapping each copied block back to the block in the CFG
// from which it is derived. By doing so, we can determine if that block is a loop header,
// or how two blocks are sorted relative to each other in the reverse postorder, without
// having to ever recompute the three analyses mentioned above.
let mut block_infos = BlockInfos::new(cfg, domtree, loops);
// For each block B, treeify B IFF it has multiple predecessors, where for each
// predecessor P, P appears before B in the reverse postorder sort of the CFG.
// Treeifying B involves creating a copy of B and the subgraph of the CFG rooted at B,
// for each P.
//
// The blocks are selected this way, since by splitting these nodes in the CFG, such
// that each predecessor gets its own copy of the subgraph reached via B, the CFG is
// made more tree-like. Once all nodes are split, then the CFG is either a tree, or
// a DAG that is almost a tree, with the only remaining DAG edges being loopback edges
// for loops that appear in the CFG.
let mut block_q = VecDeque::<CopyBlock>::default();
let mut changed = false;
for b in to_visit {
// Check if this block meets the conditions for treeification
let predecessors = block_infos
.cfg
.pred_iter(b)
.filter(|bp| block_infos.rpo_cmp(bp.block, b).is_lt())
.collect::<Vec<_>>();
if predecessors.len() < 2 {
continue;
}
log::trace!("found candidate for treeification: {b}");
// For each predecessor, create a clone of B and all of its successors, with
// the exception of successors which are loop headers where the loop header
// appears before B in the reverse postorder sort of the CFG. Such edges are
// loopback edges to an outer loop, which must be preserved, even when cloning
// the subgraph rooted at B.
for p in predecessors {
assert!(block_q.is_empty());
log::trace!("scheduling copy of {b} for predecessor {}", p.block);
block_q.push_back(CopyBlock::new(b, p));
let root = b;
while let Some(CopyBlock {
b,
ref p,
value_map,
block_map,
}) = block_q.pop_front()
{
// If we enqueue a successor block to be copied, and that block is a loop header
// which appears before the root block in the CFG, then it is a loopback edge
// that escapes the portion of the CFG being treeified, and we do not want not
// actually copy it.
if block_infos.is_loop_header(b).is_some()
&& block_infos.rpo_cmp(b, root).is_lt()
{
log::trace!(
"skipping copy of {b} for {} as {b} dominates {root} (i.e. it is a \
loopback edge)",
p.block
);
continue;
}
// Copy this block and its successors
treeify(b, p, function, &mut block_infos, &mut block_q, value_map, block_map)?;
}
// Mark the control flow graph as modified
changed = true;
}
}
// If we made any changes, we need to recompute all analyses
if !changed {
analyses.mark_all_preserved::<Function>(&function.id);
} else {
// Recompute the CFG and dominator tree and remove all unreachable blocks
let cfg = ControlFlowGraph::with_function(function);
let domtree = DominatorTree::with_function(function, &cfg);
let mut to_remove = vec![];
for (b, _) in function.dfg.blocks() {
if domtree.is_reachable(b) {
continue;
}
to_remove.push(b);
}
// Remove all blocks from the function that were unreachable
for b in to_remove {
function.dfg.detach_block(b);
}
}
session.print(&function, Self::FLAG).into_diagnostic()?;
if session.should_print_cfg(Self::FLAG) {
use std::io::Write;
let cfg = function.cfg_printer();
let mut stdout = std::io::stdout().lock();
write!(&mut stdout, "{cfg}").into_diagnostic()?;
}
Ok(())
}
}
#[allow(clippy::too_many_arguments)]
fn treeify(
b: BlockId,
p: &BlockPredecessor,
function: &mut hir::Function,
block_infos: &mut BlockInfos,
block_q: &mut VecDeque<CopyBlock>,
mut value_map: ScopedMap<ValueId, ValueId>,
mut block_map: ScopedMap<BlockId, BlockId>,
) -> Result<(), Report> {
// Check if we're dealing with a loop header
let is_loop = block_infos.is_loop_header(b).is_some();
log::trace!(
"starting treeification for {b} from {} (is {b} loop header? {is_loop})",
p.block
);
// 1. Create a new block `b'`, without block arguments, unless it is a loop header,
// in which case we want to preserve the block arguments, just with new value ids
let b_prime = function.dfg.create_block_after(p.block);
log::trace!("created block {b_prime} as clone of {b}");
block_map.insert(b, b_prime);
block_infos.insert_copy(b_prime, b);
// 2. Remap values in the cloned block:
//
// * If this is a loop header, we need to replace references to the old block arguments with the
// new block arguments.
// * If this is not a loop header, then we need to replace references to the block arguments
// with the values which were passed as arguments in the predecessor block
if is_loop {
function.dfg.clone_block_params(b, b_prime);
for (src, dest) in function
.dfg
.block_params(b)
.iter()
.copied()
.zip(function.dfg.block_params(b_prime).iter().copied())
{
value_map.insert(src, dest);
}
} else {
match function.dfg.analyze_branch(p.inst) {
BranchInfo::SingleDest(info) => {
value_map.extend(
function.dfg.block_args(b).iter().copied().zip(info.args.iter().copied()),
);
}
BranchInfo::MultiDest(ref infos) => {
let info = infos.iter().find(|info| info.destination == b).unwrap();
value_map.extend(
function.dfg.block_args(b).iter().copied().zip(info.args.iter().copied()),
);
}
BranchInfo::NotABranch => unreachable!(),
}
}
// 3. Update the predecessor instruction to reference the new block, remove block arguments if
// this is not a loop header.
let mut seen = false; // Only update the first occurrance of this predecessor
update_predecessor(function, p, |successor, pool| {
log::trace!("maybe updating successor {} of {}", successor.destination, p.block);
if successor.destination == b && !seen {
seen = true;
successor.destination = b_prime;
if !is_loop {
successor.args.clear(pool);
}
}
});
assert!(seen);
// 4. Copy contents of `b` to `b'`, inserting defs in the lookup table, and mapping operands to
// their new "corrected" values
copy_instructions(b, b_prime, function, &mut value_map, &block_map);
// 5. Clone the children of `b` and append to `b_prime`, but do not clone children of `b` that
// are loop headers, only clone the edge.
copy_children(b, b_prime, function, block_q, value_map, block_map)
}
#[allow(clippy::too_many_arguments)]
fn copy_children(
b: BlockId,
b_prime: BlockId,
function: &mut hir::Function,
block_q: &mut VecDeque<CopyBlock>,
value_map: ScopedMap<ValueId, ValueId>,
block_map: ScopedMap<BlockId, BlockId>,
) -> Result<(), Report> {
let pred = BlockPredecessor {
inst: function.dfg.last_inst(b_prime).expect("expected non-empty block"),
block: b_prime,
};
let successors = match function.dfg.analyze_branch(function.dfg.last_inst(b).unwrap()) {
BranchInfo::NotABranch => return Ok(()),
BranchInfo::SingleDest(info) => smallvec![info.destination],
BranchInfo::MultiDest(infos) => {
SmallVec::<[_; 2]>::from_iter(infos.into_iter().map(|info| info.destination))
}
};
let value_map = Rc::new(value_map);
let block_map = Rc::new(block_map);
for succ in successors {
if let Some(succ_prime) = block_map.get(&succ) {
update_predecessor(function, &pred, |successor, _| {
if successor.destination == succ {
successor.destination = *succ_prime;
}
});
}
block_q.push_back(CopyBlock {
b: succ,
p: pred,
value_map: ScopedMap::new(Some(value_map.clone())),
block_map: ScopedMap::new(Some(block_map.clone())),
});
}
Ok(())
}
fn copy_instructions(
b: BlockId,
b_prime: BlockId,
function: &mut hir::Function,
value_map: &mut ScopedMap<ValueId, ValueId>,
block_map: &ScopedMap<BlockId, BlockId>,
) {
// Initialize the cursor at the first instruction in `b`
let mut next = {
let cursor = function.dfg.block(b).insts.front();
cursor.get().map(|inst_data| inst_data as *const InstNode)
};
while let Some(ptr) = next.take() {
// Get the id of the instruction at the current cursor position, then advance the cursor
let src_inst = {
let mut cursor = unsafe { function.dfg.block(b).insts.cursor_from_ptr(ptr) };
let id = cursor.get().unwrap().key;
cursor.move_next();
next = cursor.get().map(|inst_data| inst_data as *const InstNode);
id
};
// Clone the source instruction data
let inst = function.dfg.clone_inst(src_inst);
// We need to fix up the cloned instruction data
let data = &mut function.dfg.insts[inst];
// First, we're going to be placing it in b', so make sure the instruction is aware of that
data.block = b_prime;
// Second, we need to rewrite value/block references contained in the instruction
match data.as_mut() {
Instruction::Br(hir::Br {
ref mut successor, ..
}) => {
if let Some(new_dest) = block_map.get(&successor.destination) {
successor.destination = *new_dest;
}
let args = successor.args.as_mut_slice(&mut function.dfg.value_lists);
for arg in args.iter_mut() {
if let Some(arg_prime) = value_map.get(arg) {
*arg = *arg_prime;
}
}
}
Instruction::CondBr(hir::CondBr {
ref mut cond,
ref mut then_dest,
ref mut else_dest,
..
}) => {
if let Some(cond_prime) = value_map.get(cond) {
*cond = *cond_prime;
}
if let Some(new_dest) = block_map.get(&then_dest.destination) {
then_dest.destination = *new_dest;
}
let then_args = then_dest.args.as_mut_slice(&mut function.dfg.value_lists);
for arg in then_args.iter_mut() {
if let Some(arg_prime) = value_map.get(arg) {
*arg = *arg_prime;
}
}
if let Some(new_dest) = block_map.get(&else_dest.destination) {
else_dest.destination = *new_dest;
}
let else_args = else_dest.args.as_mut_slice(&mut function.dfg.value_lists);
for arg in else_args.iter_mut() {
if let Some(arg_prime) = value_map.get(arg) {
*arg = *arg_prime;
}
}
}
Instruction::Switch(hir::Switch {
ref mut arg,
ref mut arms,
default: ref mut default_succ,
..
}) => {
if let Some(arg_prime) = value_map.get(arg) {
*arg = *arg_prime;
}
if let Some(new_default_dest) = block_map.get(&default_succ.destination) {
default_succ.destination = *new_default_dest;
}
let default_args = default_succ.args.as_mut_slice(&mut function.dfg.value_lists);
for arg in default_args.iter_mut() {
if let Some(arg_prime) = value_map.get(arg) {
*arg = *arg_prime;
}
}
for arm in arms.iter_mut() {
if let Some(new_dest) = block_map.get(&arm.successor.destination) {
arm.successor.destination = *new_dest;
}
let args = arm.successor.args.as_mut_slice(&mut function.dfg.value_lists);
for arg in args.iter_mut() {
if let Some(arg_prime) = value_map.get(arg) {
*arg = *arg_prime;
}
}
}
}
other => {
for arg in other.arguments_mut(&mut function.dfg.value_lists).iter_mut() {
if let Some(arg_prime) = value_map.get(arg) {
*arg = *arg_prime;
}
}
}
}
// Finally, append the cloned instruction to the block layout
let node = unsafe { UnsafeRef::from_raw(data) };
function.dfg.block_mut(b_prime).insts.push_back(node);
value_map.extend(
function
.dfg
.inst_results(src_inst)
.iter()
.copied()
.zip(function.dfg.inst_results(inst).iter().copied()),
);
}
}
struct CopyBlock {
b: BlockId,
p: BlockPredecessor,
value_map: ScopedMap<ValueId, ValueId>,
block_map: ScopedMap<BlockId, BlockId>,
}
impl CopyBlock {
fn new(b: BlockId, p: BlockPredecessor) -> Self {
Self {
b,
p,
value_map: Default::default(),
block_map: Default::default(),
}
}
}
#[inline]
fn update_predecessor<F>(function: &mut hir::Function, p: &BlockPredecessor, mut callback: F)
where
F: FnMut(&mut hir::Successor, &mut ValueListPool),
{
match &mut *function.dfg.insts[p.inst].data {
Instruction::Br(hir::Br {
ref mut successor, ..
}) => {
callback(successor, &mut function.dfg.value_lists);
}
Instruction::CondBr(hir::CondBr {
ref mut then_dest,
ref mut else_dest,
..
}) => {
assert_ne!(then_dest.destination, else_dest.destination, "unexpected critical edge");
let value_lists = &mut function.dfg.value_lists;
callback(then_dest, value_lists);
callback(else_dest, value_lists);
}
Instruction::Switch(_) => {
panic!("expected switch instructions to have been simplified prior to treeification")
}
_ => unreachable!(),
}
}
struct BlockInfos {
blocks: BTreeMap<BlockId, BlockId>,
cfg: Rc<ControlFlowGraph>,
domtree: Rc<DominatorTree>,
loops: Rc<LoopAnalysis>,
}
impl BlockInfos {
pub fn new(
cfg: Rc<ControlFlowGraph>,
domtree: Rc<DominatorTree>,
loops: Rc<LoopAnalysis>,
) -> Self {
Self {
blocks: Default::default(),
cfg,
domtree,
loops,
}
}
pub fn insert_copy(&mut self, copied: BlockId, original: BlockId) {
let resolved = self.to_original_block(original);
self.blocks.insert(copied, resolved);
}
pub fn is_loop_header(&self, block_id: BlockId) -> Option<Loop> {
let resolved = self.to_original_block(block_id);
self.loops.is_loop_header(resolved)
}
pub fn rpo_cmp(&self, a: BlockId, b: BlockId) -> core::cmp::Ordering {
let a_orig = self.to_original_block(a);
let b_orig = self.to_original_block(b);
self.domtree.rpo_cmp_block(a_orig, b_orig)
}
fn to_original_block(&self, mut block_id: BlockId) -> BlockId {
loop {
if let Some(copied_from) = self.blocks.get(&block_id).copied() {
block_id = copied_from;
continue;
}
break block_id;
}
}
}
#[cfg(test)]
mod tests {
use midenc_hir::{
pass::{AnalysisManager, RewritePass},
testing::{self, TestContext},
ModuleBuilder,
};
use pretty_assertions::{assert_eq, assert_ne};
use crate::Treeify;
/// Run the treeify pass on the IR of the [testing::sum_matrix] function.
///
/// This function corresponds forms a directed, cyclic graph; containing a loop
/// two levels deep, with control flow paths that join multiple predecessors.
/// It has no critical edges, as if we had already run the [SplitCriticalEdges]
/// pass, and doesn't contain any superfluous blocks:
///
/// We expect this pass to identify that the exit block, `blk0` has multiple predecessors
/// and is not a loop header, and thus a candidate for treeification. We expect `blk0`
/// to be duplicated, so that each of it's predecessors, `entry` and `blk2` respectively,
/// have their own copies of the block. The terminators of those blocks should be
/// updated accordingly. Additionally, because the new versions of `blk0` have only
/// a single predecessor, the block arguments previously needed, should be removed
/// and the `ret` instruction should directly reference the return value originally
/// provided via `entry`/`blk2`.
#[test]
fn treeify_simple_test() {
let context = TestContext::default();
// Define the 'test' module
let mut builder = ModuleBuilder::new("test");
let id = testing::sum_matrix(&mut builder, &context);
let mut module = builder.build();
let mut function = module.cursor_mut_at(id.function).remove().expect("undefined function");
let original = function.to_string();
let mut analyses = AnalysisManager::default();
let mut rewrite = Treeify;
rewrite
.apply(&mut function, &mut analyses, &context.session)
.expect("treeification failed");
let expected = "\
(func (export #sum_matrix)
(param (ptr u32)) (param u32) (param u32) (result u32)
(block 0 (param v0 (ptr u32)) (param v1 u32) (param v2 u32)
(let (v10 u32) (const.u32 0))
(let (v11 u32) (ptrtoint v0))
(let (v12 i1) (neq v11 0))
(condbr v12 (block 2) (block 7)))
(block 7
(ret v10))
(block 2
(let (v13 u32) (const.u32 0))
(let (v14 u32) (const.u32 0))
(let (v15 u32) (mul.checked v2 4))
(br (block 3 v10 v13 v14)))
(block 3 (param v4 u32) (param v5 u32) (param v6 u32)
(let (v16 i1) (lt v5 v1))
(let (v17 u32) (mul.checked v5 v15))
(condbr v16 (block 4 v4 v5 v6) (block 8)))
(block 8
(ret v4))
(block 4 (param v7 u32) (param v8 u32) (param v9 u32)
(let (v18 i1) (lt v9 v2))
(condbr v18 (block 5) (block 6)))
(block 5
(let (v19 u32) (mul.checked v9 4))
(let (v20 u32) (add.checked v17 v19))
(let (v21 u32) (add.checked v11 v20))
(let (v22 (ptr u32)) (inttoptr v21))
(let (v23 u32) (load v22))
(let (v24 u32) (add.checked v7 v23))
(let (v25 u32) (incr.wrapping v9))
(br (block 4 v24 v8 v25)))
(block 6
(let (v26 u32) (incr.wrapping v8))
(let (v27 u32) (const.u32 0))
(br (block 3 v7 v26 v27)))
)";
let transformed = function.to_string();
assert_ne!(transformed, original);
assert_eq!(transformed.as_str(), expected);
}
}