1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
use std::{fmt, path::Path, sync::Arc};
use hir::{Signature, Symbol};
use miden_assembly::{
ast::{ModuleKind, ProcedureName},
KernelLibrary, Library as CompiledLibrary, LibraryNamespace,
};
use miden_core::crypto::hash::Rpo256;
use midenc_hir::{
self as hir, diagnostics::Report, DataSegmentTable, Felt, FieldElement, FunctionIdent,
GlobalVariableTable, Ident, SourceSpan,
};
use midenc_hir_analysis::GlobalVariableAnalysis;
use midenc_session::{Emit, Session};
use super::{module::Modules, *};
use crate::packaging::Rodata;
inventory::submit! {
midenc_session::CompileFlag::new("test_harness")
.long("test-harness")
.action(midenc_session::FlagAction::SetTrue)
.help("If present, causes the code generator to emit extra code for the VM test harness")
.help_heading("Testing")
}
/// A [Program] represents a complete set of modules which are intended to be shipped and executed
/// together.
#[derive(Clone)]
pub struct Program {
/// The code for this program
library: Library,
/// The function identifier for the program entrypoint, if applicable
entrypoint: FunctionIdent,
/// The base address of the dynamic heap, as computed by the codegen backend
///
/// Defaults to an offset which is two 64k pages from the start of linear memory,
/// or, if available, the next byte following the both the reserved linear memory region as
/// declared in HIR, and the global variables of the program.
heap_base: u32,
}
impl Program {
/// Create a new [Program] initialized from an [hir::Program].
///
/// The resulting [Program] will have the following:
///
/// * Data segments described by the original [hir::Program]
/// * The entrypoint function which will be invoked after the initialization phase of startup
/// * If an entrypoint is set, an executable [Module] which performs initialization and then
/// invokes the entrypoint
///
/// None of the HIR modules will have been added yet
pub fn from_hir(
program: &hir::Program,
globals: &GlobalVariableAnalysis<hir::Program>,
) -> Result<Self, Report> {
let Some(entrypoint) = program.entrypoint() else {
return Err(Report::msg("invalid program: no entrypoint"));
};
let library = Library::from_hir(program, globals);
// Compute the first page boundary after the end of the globals table to use as the start
// of the dynamic heap when the program is executed
let heap_base = program.reserved_memory_bytes()
+ u32::try_from(
program.globals().size_in_bytes().next_multiple_of(program.page_size() as usize),
)
.expect("unable to allocate dynamic heap: global table too large");
Ok(Self {
library,
entrypoint,
heap_base,
})
}
/// Get the raw [Rodata] segments for this program
pub fn rodatas(&self) -> &[Rodata] {
self.library.rodata.as_slice()
}
/// Link this [Program] against the given kernel during assembly
pub fn link_kernel(&mut self, kernel: KernelLibrary) {
self.library.link_kernel(kernel);
}
/// Link this [Program] against the given library during assembly
pub fn link_library(&mut self, library: CompiledLibrary) {
self.library.link_library(library);
}
/// Get the set of [CompiledLibrary] this program links against
pub fn link_libraries(&self) -> &[CompiledLibrary] {
self.library.link_libraries()
}
/// Generate an executable module which when run expects the raw data segment data to be
/// provided on the advice stack in the same order as initialization, and the operands of
/// the entrypoint function on the operand stack.
fn generate_main(&self, entrypoint: FunctionIdent, emit_test_harness: bool) -> Box<Module> {
let mut exe = Box::new(Module::new(LibraryNamespace::Exec.into(), ModuleKind::Executable));
let start_id = FunctionIdent {
module: Ident::with_empty_span(Symbol::intern(LibraryNamespace::EXEC_PATH)),
function: Ident::with_empty_span(Symbol::intern(ProcedureName::MAIN_PROC_NAME)),
};
let start_sig = Signature::new([], []);
let mut start = Box::new(Function::new(start_id, start_sig));
{
let body = start.body_mut();
// Initialize dynamic heap
body.push(Op::PushU32(self.heap_base), SourceSpan::default());
body.push(
Op::Exec("intrinsics::mem::heap_init".parse().unwrap()),
SourceSpan::default(),
);
// Initialize data segments from advice stack
self.emit_data_segment_initialization(body);
// Possibly initialize test harness
if emit_test_harness {
self.emit_test_harness(body);
}
// Invoke the program entrypoint
body.push(Op::Exec(entrypoint), SourceSpan::default());
}
exe.push_back(start);
exe
}
fn emit_test_harness(&self, block: &mut Block) {
let span = SourceSpan::default();
// Advice Stack: [dest_ptr, num_words, ...]
block.push(Op::AdvPush(2), span); // => [num_words, dest_ptr] on operand stack
block.push(Op::Exec("std::mem::pipe_words_to_memory".parse().unwrap()), span);
// Drop HASH
block.push(Op::Dropw, span);
// Drop dest_ptr
block.push(Op::Drop, span);
}
/// Emit the sequence of instructions necessary to consume rodata from the advice stack and
/// populate the global heap with the data segments of this program, verifying that the
/// commitments match.
fn emit_data_segment_initialization(&self, block: &mut Block) {
// Emit data segment initialization code
//
// NOTE: This depends on the program being executed with the data for all data
// segments having been placed in the advice map with the same commitment and
// encoding used here. The program will fail to execute if this is not set up
// correctly.
//
// TODO(pauls): To facilitate automation of this, we should emit an inputs file to
// disk that maps each segment to a commitment and its data encoded as binary. This
// can then be loaded into the advice provider during VM init.
let pipe_preimage_to_memory = "std::mem::pipe_preimage_to_memory".parse().unwrap();
for rodata in self.library.rodata.iter() {
let span = SourceSpan::default();
// Move rodata from advice map to advice stack
block.push(Op::Pushw(rodata.digest.into()), span); // COM
block.push(Op::AdvInjectPushMapVal, span);
// write_ptr
block.push(Op::PushU32(rodata.start.waddr), span);
// num_words
block.push(Op::PushU32(rodata.size_in_words() as u32), span);
// [num_words, write_ptr, COM, ..] -> [write_ptr']
block.push(Op::Exec(pipe_preimage_to_memory), span);
// drop write_ptr'
block.push(Op::Drop, span);
}
}
#[inline(always)]
pub fn entrypoint(&self) -> FunctionIdent {
self.entrypoint
}
#[inline(always)]
pub fn stack_pointer(&self) -> Option<u32> {
self.library.stack_pointer
}
/// Freezes this program, preventing further modifications
pub fn freeze(mut self: Box<Self>) -> Arc<Program> {
self.library.modules.freeze();
Arc::from(self)
}
/// Get an iterator over the modules in this program
pub fn modules(&self) -> impl Iterator<Item = &Module> + '_ {
self.library.modules.iter()
}
/// Access the frozen module tree of this program, and panic if not frozen
pub fn unwrap_frozen_modules(&self) -> &FrozenModuleTree {
self.library.unwrap_frozen_modules()
}
/// Insert a module into this program.
///
/// The insertion order is not preserved - modules are ordered by name.
///
/// NOTE: This function will panic if the program has been frozen
pub fn insert(&mut self, module: Box<Module>) {
self.library.insert(module)
}
/// Get a reference to a module in this program by name
pub fn get<Q>(&self, name: &Q) -> Option<&Module>
where
Q: ?Sized + Ord,
Ident: core::borrow::Borrow<Q>,
{
self.library.get(name)
}
/// Returns true if this program contains a [Module] named `name`
pub fn contains<N>(&self, name: N) -> bool
where
Ident: PartialEq<N>,
{
self.library.contains(name)
}
/// Write this [Program] to the given output directory.
pub fn write_to_directory<P: AsRef<Path>>(
&self,
path: P,
session: &Session,
) -> std::io::Result<()> {
let path = path.as_ref();
assert!(path.is_dir());
self.library.write_to_directory(path, session)?;
let main = self.generate_main(self.entrypoint, /* test_harness= */ false);
main.write_to_directory(path, session)?;
Ok(())
}
// Assemble this program to MAST
pub fn assemble(&self, session: &Session) -> Result<Arc<miden_core::Program>, Report> {
use miden_assembly::{Assembler, CompileOptions};
let debug_mode = session.options.emit_debug_decorators();
log::debug!(
"assembling executable with entrypoint '{}' (debug_mode={})",
self.entrypoint,
debug_mode
);
let mut assembler =
Assembler::new(session.source_manager.clone()).with_debug_mode(debug_mode);
// Link extra libraries
for library in self.library.libraries.iter() {
if log::log_enabled!(log::Level::Debug) {
for module in library.module_infos() {
log::debug!("registering '{}' with assembler", module.path());
}
}
assembler.add_library(library)?;
}
// Assemble library
for module in self.library.modules.iter() {
log::debug!("adding '{}' to assembler", module.id.as_str());
let kind = module.kind;
let module = module.to_ast(debug_mode).map(Box::new)?;
assembler.add_module_with_options(
module,
CompileOptions {
kind,
warnings_as_errors: false,
path: None,
},
)?;
}
let emit_test_harness = session.get_flag("test_harness");
let main = self.generate_main(self.entrypoint, emit_test_harness);
let main = main.to_ast(debug_mode).map(Box::new)?;
assembler.assemble_program(main).map(Arc::new)
}
pub(crate) fn library(&self) -> &Library {
&self.library
}
}
impl fmt::Display for Program {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.library, f)
}
}
impl Emit for Program {
fn name(&self) -> Option<Symbol> {
None
}
fn output_type(&self, _mode: midenc_session::OutputMode) -> midenc_session::OutputType {
midenc_session::OutputType::Masm
}
fn write_to<W: std::io::Write>(
&self,
mut writer: W,
mode: midenc_session::OutputMode,
_session: &Session,
) -> std::io::Result<()> {
assert_eq!(
mode,
midenc_session::OutputMode::Text,
"binary mode is not supported for masm ir programs"
);
writer.write_fmt(format_args!("{}\n", self))
}
}
/// A [Library] represents a set of modules and its dependencies, which are compiled/assembled
/// together into a single artifact, and then linked into a [Program] for execution at a later
/// time.
///
/// Modules are stored in a [Library] in a B-tree map, keyed by the module name. This is done to
/// make accessing modules by name efficient, and to ensure a stable ordering for compiled programs
/// when emitted as text.
#[derive(Default, Clone)]
pub struct Library {
/// The set of modules which belong to this program
modules: Modules,
/// The set of libraries to link this program against
libraries: Vec<CompiledLibrary>,
/// The kernel library to link against
kernel: Option<KernelLibrary>,
/// The rodata segments of this program keyed by the offset of the segment
rodata: Vec<Rodata>,
/// The address of the `__stack_pointer` global, if such a global has been defined
stack_pointer: Option<u32>,
}
impl Library {
/// Create a new, empty [Library]
pub fn empty() -> Self {
Self::default()
}
/// Create a new [Library] initialized from an [hir::Program].
///
/// The resulting [Library] will have the following:
///
/// * Data segments described by the original [hir::Program]
///
/// None of the HIR modules will have been added yet
pub fn from_hir(
program: &hir::Program,
globals: &GlobalVariableAnalysis<hir::Program>,
) -> Self {
let stack_pointer = program.globals().find("__stack_pointer".parse().unwrap());
let stack_pointer = if let Some(stack_pointer) = stack_pointer {
let global_table_offset = globals.layout().global_table_offset();
Some(global_table_offset + unsafe { program.globals().offset_of(stack_pointer) })
} else {
None
};
let rodata = compute_rodata(
globals.layout().global_table_offset(),
program.globals(),
program.segments(),
);
Self {
modules: Modules::default(),
libraries: vec![],
kernel: None,
rodata,
stack_pointer,
}
}
pub fn rodatas(&self) -> &[Rodata] {
self.rodata.as_slice()
}
/// Link this [Library] against the given kernel during assembly
pub fn link_kernel(&mut self, kernel: KernelLibrary) {
self.kernel = Some(kernel);
}
/// Link this [Library] against the given library during assembly
pub fn link_library(&mut self, library: CompiledLibrary) {
self.libraries.push(library);
}
/// Get the set of [CompiledLibrary] this library links against
pub fn link_libraries(&self) -> &[CompiledLibrary] {
self.libraries.as_slice()
}
/// Freezes this library, preventing further modifications
pub fn freeze(mut self: Box<Self>) -> Arc<Library> {
self.modules.freeze();
Arc::from(self)
}
/// Get an iterator over the modules in this library
pub fn modules(&self) -> impl Iterator<Item = &Module> + '_ {
self.modules.iter()
}
/// Access the frozen module tree of this library, and panic if not frozen
pub fn unwrap_frozen_modules(&self) -> &FrozenModuleTree {
match self.modules {
Modules::Frozen(ref modules) => modules,
Modules::Open(_) => panic!("expected program to be frozen"),
}
}
/// Insert a module into this library.
///
/// The insertion order is not preserved - modules are ordered by name.
///
/// NOTE: This function will panic if the program has been frozen
pub fn insert(&mut self, module: Box<Module>) {
self.modules.insert(module);
}
/// Get a reference to a module in this library by name
pub fn get<Q>(&self, name: &Q) -> Option<&Module>
where
Q: ?Sized + Ord,
Ident: core::borrow::Borrow<Q>,
{
self.modules.get(name)
}
/// Returns true if this library contains a [Module] named `name`
pub fn contains<N>(&self, name: N) -> bool
where
Ident: PartialEq<N>,
{
self.modules.iter().any(|m| m.id == name)
}
/// Write this [Library] to the given output directory.
pub fn write_to_directory<P: AsRef<Path>>(
&self,
path: P,
session: &Session,
) -> std::io::Result<()> {
let path = path.as_ref();
assert!(path.is_dir());
for module in self.modules.iter() {
module.write_to_directory(path, session)?;
}
Ok(())
}
// Assemble this library to MAST
pub fn assemble(&self, session: &Session) -> Result<Arc<CompiledLibrary>, Report> {
use miden_assembly::Assembler;
let debug_mode = session.options.emit_debug_decorators();
log::debug!(
"assembling library of {} modules (debug_mode={})",
self.modules().count(),
debug_mode
);
let mut assembler =
Assembler::new(session.source_manager.clone()).with_debug_mode(debug_mode);
// Link extra libraries
for library in self.libraries.iter() {
if log::log_enabled!(log::Level::Debug) {
for module in library.module_infos() {
log::debug!("registering '{}' with assembler", module.path());
}
}
assembler.add_library(library)?;
}
// Assemble library
let mut modules = Vec::with_capacity(self.modules.len());
for module in self.modules.iter() {
log::debug!("adding '{}' to assembler", module.id.as_str());
let module = module.to_ast(debug_mode).map(Box::new)?;
modules.push(module);
}
assembler.assemble_library(modules).map(Arc::new)
}
}
impl fmt::Display for Library {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for module in self.modules.iter() {
// Don't print intrinsic modules
if module.id.as_str().starts_with("intrinsics::") {
continue;
}
if ["intrinsics", "std"].contains(&module.name.namespace().as_str()) {
// Skip printing the standard library modules and intrinsics
// modules to focus on the user-defined modules and avoid the
// stack overflow error when printing large programs
// https://github.com/0xPolygonMiden/miden-formatting/issues/4
continue;
} else {
writeln!(f, "# mod {}\n", &module.name)?;
writeln!(f, "{}", module)?;
}
}
Ok(())
}
}
impl Emit for Library {
fn name(&self) -> Option<Symbol> {
None
}
fn output_type(&self, _mode: midenc_session::OutputMode) -> midenc_session::OutputType {
midenc_session::OutputType::Masm
}
fn write_to<W: std::io::Write>(
&self,
mut writer: W,
mode: midenc_session::OutputMode,
_session: &Session,
) -> std::io::Result<()> {
assert_eq!(
mode,
midenc_session::OutputMode::Text,
"binary mode is not supported for masm ir libraries"
);
writer.write_fmt(format_args!("{}\n", self))
}
}
/// Compute the metadata for each non-empty rodata segment in the program.
///
/// This consists of the data itself, as well as a content digest, which will be used to place
/// that data in the advice map when the program starts.
fn compute_rodata(
global_table_offset: u32,
globals: &GlobalVariableTable,
segments: &DataSegmentTable,
) -> Vec<Rodata> {
let mut rodatas = Vec::with_capacity(segments.iter().count() + 1);
// Convert global variable initializers to a data segment, and place it at the computed
// global table offset in linear memory.
let extra = if !globals.is_empty() {
let size = globals.size_in_bytes();
let offset = global_table_offset;
let mut data = vec![0; size];
for gv in globals.iter() {
if let Some(init) = gv.initializer() {
let offset = unsafe { globals.offset_of(gv.id()) } as usize;
let init = globals.get_constant(init);
let init_bytes = init.as_slice();
assert!(offset + init_bytes.len() <= data.len());
let dst = &mut data[offset..(offset + init_bytes.len())];
dst.copy_from_slice(init_bytes);
}
}
// Don't bother emitting anything for zeroed segments
if data.iter().any(|&b| b != 0) {
Some((size as u32, offset, Arc::new(midenc_hir::ConstantData::from(data))))
} else {
None
}
} else {
None
};
// Process all segments, ignoring zeroed segments (as Miden's memory is always zeroed)
for (size, offset, segment_data) in segments
.iter()
.filter_map(|segment| {
if segment.is_zeroed() {
None
} else {
Some((segment.size(), segment.offset(), segment.init()))
}
})
.chain(extra)
{
let base = NativePtr::from_ptr(offset);
// TODO(pauls): Do we ever have a need for data segments which are not aligned
// to an word boundary? If so, we need to implement that
// support when emitting the entry for a program
assert_eq!(
base.offset,
0,
"unsupported data segment alignment {}: must be aligned to a 32 byte boundary",
base.alignment()
);
assert_eq!(
base.index,
0,
"unsupported data segment alignment {}: must be aligned to a 32 byte boundary",
base.alignment()
);
// Compute the commitment for the data
let num_elements = (size.next_multiple_of(4) / 4) as usize;
let num_words = num_elements.next_multiple_of(4) / 4;
let padding = (num_words * 4).abs_diff(num_elements);
let mut elements = Vec::with_capacity(num_elements + padding);
// TODO(pauls): If the word containing the first element overlaps with the
// previous segment, then ensure the overlapping elements
// are mixed together, so that the data is preserved, and
// the commitment is correct
let mut iter = segment_data.as_slice().iter().copied().array_chunks::<4>();
elements.extend(iter.by_ref().map(|bytes| Felt::new(u32::from_le_bytes(bytes) as u64)));
if let Some(remainder) = iter.into_remainder() {
let mut chunk = [0u8; 4];
for (i, byte) in remainder.into_iter().enumerate() {
chunk[i] = byte;
}
elements.push(Felt::new(u32::from_le_bytes(chunk) as u64));
}
elements.resize(num_elements + padding, Felt::ZERO);
let digest = Rpo256::hash_elements(&elements);
log::debug!(
"computed commitment for data segment at offset {offset} ({size} bytes, \
{num_elements} elements): '{digest}'"
);
rodatas.push(Rodata {
digest,
start: base,
data: segment_data,
});
}
rodatas
}