1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
mod breakpoints;
mod debug;
mod events;
mod functions;
mod memory;

use std::{cell::RefCell, cmp, rc::Rc, sync::Arc};

use memory::Memory;
use miden_assembly::{ast::ProcedureName, LibraryNamespace};
use midenc_hir::{assert_matches, Felt, FieldElement, FunctionIdent, Ident, OperandStack, Stack};
use rustc_hash::{FxHashMap, FxHashSet};

use self::functions::{Activation, Stub};
pub use self::{
    breakpoints::*,
    debug::{CallFrame, DebugInfo, DebugInfoWithStack},
    events::{BreakpointEvent, ControlEffect, EmulatorEvent},
    functions::{Instruction, InstructionWithOp, NativeFn},
};
use crate::{BlockId, Function, Module, Op, Program};

/// This type represents the various sorts of errors which can occur when
/// running the emulator on a MASM program. Some errors may result in panics,
/// but those which we can handle are represented here.
#[derive(Debug, Clone, thiserror::Error, PartialEq)]
pub enum EmulationError {
    /// The given module is already loaded
    #[error("unable to load module: '{0}' is already loaded")]
    AlreadyLoaded(Ident),
    /// The given function is already loaded
    #[error("unable to load function: '{0}' is already loaded")]
    DuplicateFunction(FunctionIdent),
    /// The given function cannot be found
    #[error("unable to invoke function: '{0}' is not defined")]
    UndefinedFunction(FunctionIdent),
    /// The emulator ran out of available memory
    #[error("system limit: out of memory")]
    OutOfMemory,
    /// The emulator was terminated due to a program failing to terminate in its budgeted time
    #[error("execution terminated prematurely: maximum cycle count reached")]
    CycleBudgetExceeded,
    /// A breakpoint was reached, so execution was suspended and can be resumed
    #[error("execution suspended by breakpoint")]
    BreakpointHit(BreakpointEvent),
    /// An attempt was made to run the emulator without specifying an entrypoint
    #[error("unable to start the emulator without an entrypoint")]
    NoEntrypoint,
}

/// The size/type of pointers in the emulator
pub type Addr = u32;

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct InstructionPointer {
    /// The block in which the instruction pointer is located
    pub block: BlockId,
    /// The index of the instruction pointed to
    pub index: usize,
}
impl InstructionPointer {
    pub const fn new(block: BlockId) -> Self {
        Self { block, index: 0 }
    }
}

/// This enum represents the state transitions for the emulator.
///
/// * The emulator starts in `Init`
/// * Once some code is loaded, it becomes `Loaded`
/// * Once the emulator has started executing some code, it becomes `Started`
/// * If the emulator suspends due to a breakpoint or stepping, it becomes `Suspended`
/// * Once the emulator finishes executing whatever entrypoint was invoked, it becomes `Stopped`
/// * If an error occurs between `Started` and `Stopped`, it becomes `Faulted`
///
/// Once `Started`, it is not possible to `start` the emulator again until it reaches the
/// `Stopped` state, or is explicitly reset to the `Init` or `Loaded` states using `reset`
/// or `stop` respectively.
#[derive(Debug, Default)]
enum Status {
    /// The emulator is in its initial state
    ///
    /// In this state, the emulator cannot execute any code because there
    /// is no code loaded yet.
    #[default]
    Init,
    /// A program has been loaded into the emulator, but not yet started
    ///
    /// This is the clean initial state from which a program or function can
    /// start executing. Once the emulator leaves this status, the state of
    /// the emulator is "dirty", i.e. it is no longer a clean slate.
    Loaded,
    /// The emulator has started running the current program, or a specified function.
    Started,
    /// The emulator is suspended, and awaiting resumption
    Suspended,
    /// The emulator finished running the current program, or a specified function,
    /// and the state of the emulator has not yet been reset.
    Stopped,
    /// The emulator has stopped due to an error, and cannot proceed further
    Faulted(EmulationError),
}

/// [Emulator] provides us with a means to execute our MASM IR directly
/// without having to emit "real" MASM and run it via the Miden VM.
/// In other words, it's a convenient way to run tests to verify the
/// expected behavior of a program without all of the baggage of the
/// Miden VM.
///
/// [Emulator] is necessarily a more limited execution environment:
///
/// * It only handles instructions which are defined in the [Op] enum
/// * Anything related to proving, calling contracts, etc. is not supported
/// * The default environment is empty, i.e. there are no Miden VM standard
/// library functions available. Users must emit Miden IR for all functions
/// they wish to call, or alternatively, provide native stubs.
pub struct Emulator {
    status: Status,
    functions: FxHashMap<FunctionIdent, Stub>,
    locals: FxHashMap<FunctionIdent, Addr>,
    modules_loaded: FxHashMap<Ident, Arc<Module>>,
    modules_pending: FxHashSet<Ident>,
    memory: Memory,
    stack: OperandStack<Felt>,
    advice_stack: OperandStack<Felt>,
    callstack: Vec<Activation>,
    hp_start: u32,
    hp: u32,
    lp_start: u32,
    lp: u32,
    breakpoints: BreakpointManager,
    step_over: Option<InstructionPointer>,
    clk: usize,
    clk_limit: usize,
    entrypoint: Option<FunctionIdent>,
    print_trace: bool,
}
impl Default for Emulator {
    fn default() -> Self {
        Self::new(
            Self::DEFAULT_HEAP_SIZE,
            Self::DEFAULT_HEAP_START,
            Self::DEFAULT_LOCALS_START,
            false,
        )
    }
}
impl Emulator {
    pub const DEFAULT_HEAP_SIZE: u32 = (4 * Self::PAGE_SIZE) / 16;
    pub const DEFAULT_HEAP_START: u32 = (2 * Self::PAGE_SIZE) / 16;
    pub const DEFAULT_LOCALS_START: u32 = (3 * Self::PAGE_SIZE) / 16;
    const PAGE_SIZE: u32 = 64 * 1024;

    /// Construct a new, empty emulator with:
    ///
    /// * A linear memory heap of `memory_size` words
    /// * The start of the usable heap set to `hp` (an address in words)
    /// * The start of the reserved heap used for locals set to `lp` (an address in words)
    pub fn new(memory_size: u32, hp: u32, lp: u32, print_stack: bool) -> Self {
        let memory = Memory::new(memory_size as usize);
        Self {
            status: Status::Init,
            functions: Default::default(),
            locals: Default::default(),
            modules_loaded: Default::default(),
            modules_pending: Default::default(),
            memory,
            stack: Default::default(),
            advice_stack: Default::default(),
            callstack: vec![],
            hp_start: hp,
            hp,
            lp_start: lp,
            lp,
            breakpoints: Default::default(),
            step_over: None,
            clk: 0,
            clk_limit: usize::MAX,
            entrypoint: None,
            print_trace: print_stack,
        }
    }

    /// Place a cap on the number of cycles the emulator will execute before failing with an error
    pub fn set_max_cycles(&mut self, max: usize) {
        self.clk_limit = max;
    }

    /// Returns all watchpoints that are currently managed by this [BreakpointManager]
    pub fn watchpoints(&self) -> impl Iterator<Item = Watchpoint> + '_ {
        self.breakpoints.watchpoints()
    }

    /// Returns all breakpoints that are currently managed by this [BreakpointManager]
    pub fn breakpoints(&self) -> impl Iterator<Item = Breakpoint> {
        self.breakpoints.breakpoints()
    }

    /// Sets a breakpoint for the emulator
    pub fn set_breakpoint(&mut self, bp: Breakpoint) {
        self.breakpoints.set(bp);
    }

    /// Removes the given breakpoint from the emulator
    pub fn clear_breakpoint(&mut self, bp: Breakpoint) {
        self.breakpoints.unset(bp);
    }

    /// Removes the all breakpoints from the emulator
    pub fn clear_breakpoints(&mut self) {
        self.breakpoints.unset_all();
    }

    /// Sets a watchpoint in the emulator
    pub fn set_watchpoint(&mut self, addr: Addr, size: u32, mode: WatchMode) -> WatchpointId {
        self.breakpoints.watch(addr, size, mode)
    }

    /// Sets a watchpoint in the emulator
    pub fn clear_watchpoint(&mut self, id: WatchpointId) {
        self.breakpoints.unwatch(id);
    }

    /// Set the watch mode for a [Watchpoint] using the identifier returned by [watch]
    pub fn watchpoint_mode(&mut self, id: WatchpointId, mode: WatchMode) {
        self.breakpoints.watch_mode(id, mode);
    }

    /// Clears all watchpoints
    pub fn clear_watchpoints(&mut self) {
        self.breakpoints.unwatch_all();
    }

    /// Clear all breakpoints and watchpoints
    pub fn clear_break_and_watchpoints(&mut self) {
        self.breakpoints.clear();
    }

    /// Get's debug information about the current emulator state
    pub fn info(&self) -> Option<DebugInfo<'_>> {
        let current = self.callstack.last()?;
        // This returns the pending activation state for the current function,
        // i.e. the next instruction to be executed, what control flow effects
        // will occur to reach that instruction, and the actual instruction pointer
        let ip = current.peek_with_op();
        Some(DebugInfo {
            cycle: self.clk,
            function: current.function().name,
            fp: current.fp(),
            ip,
            stack: &self.stack,
        })
    }

    /// Get a stacktrace for the code running in the emulator
    pub fn stacktrace(&self) -> Vec<CallFrame> {
        let mut frames = Vec::with_capacity(self.callstack.len());
        for frame in self.callstack.iter() {
            frames.push(CallFrame {
                function: frame.function().name,
                fp: frame.fp(),
                ip: Some(frame.ip()),
            })
        }
        frames
    }

    /// Get the instruction pointer that will be next executed by the emulator
    pub fn current_ip(&self) -> Option<Instruction> {
        self.callstack.last().and_then(|activation| activation.peek())
    }

    /// Get the name of the function that is currently executing
    pub fn current_function(&self) -> Option<FunctionIdent> {
        self.callstack.last().map(|activation| activation.function().name)
    }

    /// Get access to the current state of the operand stack
    pub fn stack(&mut self) -> &OperandStack<Felt> {
        &self.stack
    }

    /// Get mutable access to the current state of the operand stack
    pub fn stack_mut(&mut self) -> &mut OperandStack<Felt> {
        &mut self.stack
    }

    /// Load `program` into this emulator
    ///
    /// This resets the emulator state, as only one program may be loaded at a time.
    pub fn load_program(&mut self, program: Arc<Program>) -> Result<(), EmulationError> {
        // Ensure the emulator state is reset
        if !matches!(self.status, Status::Init) {
            self.reset();
        }

        let modules = program.unwrap_frozen_modules();
        let mut cursor = modules.front();
        while let Some(module) = cursor.clone_pointer() {
            self.load_module(module)?;
            cursor.move_next();
        }
        self.entrypoint = Some(program.entrypoint());

        // TODO: Load data segments

        self.status = Status::Loaded;

        Ok(())
    }

    /// Load `module` into this emulator
    ///
    /// An error is returned if a module with the same name is already loaded.
    pub fn load_module(&mut self, module: Arc<Module>) -> Result<(), EmulationError> {
        use std::collections::hash_map::Entry;

        assert_matches!(
            self.status,
            Status::Init | Status::Loaded,
            "cannot load modules once execution has started without calling stop() or reset() \
             first"
        );

        match self.modules_loaded.entry(module.id) {
            Entry::Occupied(_) => return Err(EmulationError::AlreadyLoaded(module.id)),
            Entry::Vacant(entry) => {
                entry.insert(module.clone());
            }
        }

        // Register module dependencies
        for import in module.imports.iter() {
            let name = Ident::with_empty_span(import.name);
            if self.modules_loaded.contains_key(&name) {
                continue;
            }
            self.modules_pending.insert(name);
        }
        self.modules_pending.remove(&module.id);

        // Load functions from this module
        let functions = module.unwrap_frozen_functions();
        let mut cursor = functions.front();
        while let Some(function) = cursor.clone_pointer() {
            self.load_function(function)?;
            cursor.move_next();
        }

        self.status = Status::Loaded;

        Ok(())
    }

    /// Reloads a loaded module, `name`.
    ///
    /// This function will panic if the named module is not currently loaded.
    pub fn reload_module(&mut self, module: Arc<Module>) -> Result<(), EmulationError> {
        self.unload_module(module.id);
        self.load_module(module)
    }

    /// Unloads a loaded module, `name`.
    ///
    /// This function will panic if the named module is not currently loaded.
    pub fn unload_module(&mut self, name: Ident) {
        assert_matches!(
            self.status,
            Status::Loaded,
            "cannot unload modules once execution has started without calling stop() or reset() \
             first"
        );

        let prev = self
            .modules_loaded
            .remove(&name)
            .expect("cannot reload a module that was not previously loaded");

        // Unload all functions associated with the previous load
        for f in prev.functions() {
            self.functions.remove(&f.name);
            self.locals.remove(&f.name);
        }

        // Determine if we need to add `name` to `modules_pending` if there are dependents still
        // loaded
        for module in self.modules_loaded.values() {
            if module.imports.is_import(&name) {
                self.modules_pending.insert(name);
                break;
            }
        }
    }

    /// Load `function` into this emulator
    fn load_function(&mut self, function: Arc<Function>) -> Result<(), EmulationError> {
        let id = function.name;
        if self.functions.contains_key(&id) {
            return Err(EmulationError::DuplicateFunction(id));
        }
        let fp = self.lp;
        self.lp += function.locals().len() as u32;
        self.functions.insert(id, Stub::Asm(function));
        self.locals.insert(id, fp);

        Ok(())
    }

    /// Load `function` into this emulator, with the given identifier
    ///
    /// Because we don't know the set of [FuncId] that have already been allocated,
    /// we leave the choice up to the caller. We assert that functions do
    /// not get defined twice to catch conflicts, just in case.
    pub fn load_nif(
        &mut self,
        id: FunctionIdent,
        function: Box<NativeFn>,
    ) -> Result<(), EmulationError> {
        assert_matches!(
            self.status,
            Status::Init | Status::Loaded,
            "cannot load nifs once execution has started without calling stop() or reset() first"
        );

        if self.functions.contains_key(&id) {
            return Err(EmulationError::DuplicateFunction(id));
        }
        self.functions.insert(id, Stub::Native(Rc::new(RefCell::new(function))));

        Ok(())
    }

    /// Allocate space for `value` on the emulator heap, and copy it's contents there.
    ///
    /// NOTE: The smallest unit of addressable memory is 4 bytes (32 bits). If you provide
    /// a value that is smaller than this, or is not a multiple of 4, the data will be padded
    /// with zeroes to ensure that it is.
    pub fn write_bytes_to_memory(&mut self, value: &[u8]) -> u32 {
        let addr = self.hp;
        if value.is_empty() {
            return addr;
        }

        let mut elem_idx = 0;
        for chunk in value.chunks(4) {
            let elem = match chunk.len() {
                4 => u32::from_le_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]),
                3 => u32::from_le_bytes([chunk[0], chunk[1], chunk[2], 0]),
                2 => u32::from_le_bytes([chunk[0], chunk[1], 0, 0]),
                1 => u32::from_le_bytes([chunk[0], 0, 0, 0]),
                0 => 0,
                _ => unreachable!(),
            };
            if elem_idx == 4 {
                elem_idx = 0;
                assert!(self.hp + 1 < self.lp, "heap has overflowed into reserved region");
                self.hp += 1;
            }
            self.memory[self.hp as usize][elem_idx] = Felt::new(elem as u64);
            elem_idx += 1;
        }

        addr
    }

    /// Allocate enough words to hold `size` bytes of memory
    ///
    /// Returns the pointer as a byte-addressable address
    pub fn malloc(&mut self, size: usize) -> u32 {
        let addr = self.hp;

        if size == 0 {
            return addr;
        }

        let size = size as u32;
        let extra = size % 16;
        let words = (size / 16) + (extra > 0) as u32;
        assert!(self.hp + words < self.lp, "heap has overflowed into reserved region");
        self.hp += words;

        addr * 16
    }

    /// Write `value` to the word at `addr`, and element `index`
    pub fn store(&mut self, addr: usize, value: Felt) {
        use crate::NativePtr;

        let ptr = NativePtr::from_ptr(addr.try_into().expect("invalid address"));
        let addr = ptr.waddr as usize;
        assert_eq!(ptr.offset, 0, "invalid store: unaligned address {addr:#?}");
        assert!(addr < self.memory.len(), "invalid address");

        self.memory[addr][ptr.index as usize] = value;
    }

    /// Start executing the current program by `invoke`ing the top-level initialization block (the
    /// entrypoint).
    ///
    /// This function will run the program to completion, and return the state of the operand stack
    /// on exit.
    ///
    /// NOTE: If no entrypoint has been loaded, an error is returned.
    ///
    /// The emulator is automatically reset when it exits successfully.
    pub fn start(&mut self) -> Result<OperandStack<Felt>, EmulationError> {
        match self.status {
            Status::Init => return Err(EmulationError::NoEntrypoint),
            Status::Loaded => (),
            Status::Stopped => {
                self.stop();
            }
            Status::Started | Status::Suspended => panic!(
                "cannot start the emulator when it is already started without calling stop() or \
                 reset() first"
            ),
            Status::Faulted(ref err) => return Err(err.clone()),
        }

        let main_fn = self.entrypoint.unwrap_or_else(|| FunctionIdent {
            module: LibraryNamespace::EXEC_PATH.into(),
            function: ProcedureName::MAIN_PROC_NAME.into(),
        });

        // Run to completion
        let stack = self.invoke(main_fn, &[]).map_err(|err| match err {
            EmulationError::UndefinedFunction(f) if f == main_fn => EmulationError::NoEntrypoint,
            err => err,
        })?;

        // Reset the emulator on exit
        self.stop();

        // Return the output contained on the operand stack
        Ok(stack)
    }

    /// Start emulation by `enter`ing the top-level initialization block (the entrypoint).
    ///
    /// This should be called instead of `start` when stepping through a program rather than
    /// executing it to completion in one call.
    ///
    /// NOTE: If no entrypoint has been loaded, an error is returned.
    ///
    /// It is up to the caller to reset the emulator when the program exits, unlike `start`.
    pub fn init(&mut self) -> Result<EmulatorEvent, EmulationError> {
        match self.status {
            Status::Init => return Err(EmulationError::NoEntrypoint),
            Status::Loaded => (),
            Status::Stopped => {
                self.stop();
            }
            Status::Started | Status::Suspended => panic!(
                "cannot start the emulator when it is already started without calling stop() or \
                 reset() first"
            ),
            Status::Faulted(ref err) => return Err(err.clone()),
        }

        let main_fn = FunctionIdent {
            module: LibraryNamespace::EXEC_PATH.into(),
            function: ProcedureName::MAIN_PROC_NAME.into(),
        };

        // Step into the entrypoint
        self.enter(main_fn, &[]).map_err(|err| match err {
            EmulationError::UndefinedFunction(f) if f == main_fn => EmulationError::NoEntrypoint,
            err => err,
        })
    }

    /// Stop running the currently executing function, and reset the cycle counter, operand stack,
    /// and linear memory.
    ///
    /// This function preserves loaded code, breakpoints, and other configuration items.
    ///
    /// If an attempt is made to run the emulator in the stopped state, a panic will occur
    pub fn stop(&mut self) {
        self.callstack.clear();
        self.stack.clear();
        self.memory.reset();
        self.hp = self.hp_start;
        self.lp = self.lp_start;
        self.step_over = None;
        self.clk = 0;
        self.status = Status::Loaded;
    }

    /// Reset the emulator state to its initial state at creation.
    ///
    /// In addition to resetting the cycle counter, operand stack, and linear memory,
    /// this function also unloads all code, and clears all breakpoints. Only the
    /// configuration used to initialize the emulator is preserved.
    ///
    /// To use the emulator after calling this function, you must load a program or module again.
    pub fn reset(&mut self) {
        self.stop();
        self.functions.clear();
        self.locals.clear();
        self.modules_loaded.clear();
        self.modules_pending.clear();
        self.breakpoints.clear();
        self.status = Status::Init;
    }

    /// Run the emulator by invoking `callee` with `args` placed on the
    /// operand stack in FIFO order.
    ///
    /// If a fatal error occurs during emulation, `Err` is returned,
    /// e.g. if `callee` has not been loaded.
    ///
    /// When `callee` returns, it's result will be returned wrapped in `Ok`.
    /// For functions with no return value, this will be `Ok(None)`, or all
    /// others it will be `Ok(Some(value))`.
    pub fn invoke(
        &mut self,
        callee: FunctionIdent,
        args: &[Felt],
    ) -> Result<OperandStack<Felt>, EmulationError> {
        assert_matches!(
            self.status,
            Status::Loaded,
            "cannot start executing a function when the emulator is already started without \
             calling stop() or reset() first"
        );
        let fun = self
            .functions
            .get(&callee)
            .cloned()
            .ok_or(EmulationError::UndefinedFunction(callee))?;
        self.status = Status::Started;
        match fun {
            Stub::Asm(ref function) => match self.invoke_function(function.clone(), args) {
                done @ Ok(_) => {
                    self.status = Status::Stopped;
                    done
                }
                Err(err @ EmulationError::BreakpointHit(_)) => {
                    self.status = Status::Suspended;
                    Err(err)
                }
                Err(err) => {
                    self.status = Status::Faulted(err.clone());
                    Err(err)
                }
            },
            Stub::Native(function) => {
                let mut function = function.borrow_mut();
                function(self, args)?;
                Ok(self.stack.clone())
            }
        }
    }

    /// Invoke a function defined in MASM IR, placing the given arguments on the
    /// operand stack in FIFO order, and suspending immediately if any breakpoints
    /// would have been triggered by the invocation.
    #[inline]
    fn invoke_function(
        &mut self,
        function: Arc<Function>,
        args: &[Felt],
    ) -> Result<OperandStack<Felt>, EmulationError> {
        // Place the arguments on the operand stack
        //assert_eq!(args.len(), function.arity());
        for arg in args.iter().copied().rev() {
            self.stack.push(arg);
        }

        // Schedule `function`
        let name = function.name;
        let fp = self.locals[&name];
        let state = Activation::new(function, fp);
        self.callstack.push(state);

        match self
            .breakpoints
            .handle_event(EmulatorEvent::EnterFunction(name), self.current_ip())
        {
            Some(bp) => Err(EmulationError::BreakpointHit(bp)),
            None => {
                self.run()?;

                Ok(self.stack.clone())
            }
        }
    }

    /// Run the emulator by invoking `callee` with `args` placed on the
    /// operand stack in FIFO order.
    ///
    /// If a fatal error occurs during emulation, `Err` is returned,
    /// e.g. if `callee` has not been loaded.
    ///
    /// When `callee` returns, it's result will be returned wrapped in `Ok`.
    /// For functions with no return value, this will be `Ok(None)`, or all
    /// others it will be `Ok(Some(value))`.
    pub fn enter(
        &mut self,
        callee: FunctionIdent,
        args: &[Felt],
    ) -> Result<EmulatorEvent, EmulationError> {
        assert_matches!(
            self.status,
            Status::Loaded,
            "cannot start executing a function when the emulator is already started without \
             calling stop() or reset() first"
        );

        let fun = self
            .functions
            .get(&callee)
            .cloned()
            .ok_or(EmulationError::UndefinedFunction(callee))?;
        self.status = Status::Started;
        match fun {
            Stub::Asm(ref function) => self.enter_function(function.clone(), args),
            Stub::Native(function) => {
                let mut function = function.borrow_mut();
                function(self, args)?;
                Ok(EmulatorEvent::ExitFunction(callee))
            }
        }
    }

    /// Stage a MASM IR function for execution by the emulator, placing the given arguments on the
    /// operand stack in FIFO order, then immediately suspending execution until the next
    /// resumption.
    #[inline]
    fn enter_function(
        &mut self,
        function: Arc<Function>,
        args: &[Felt],
    ) -> Result<EmulatorEvent, EmulationError> {
        // Place the arguments on the operand stack
        //assert_eq!(args.len(), function.arity());
        for arg in args.iter().copied().rev() {
            self.stack.push(arg);
        }

        // Schedule `function`
        let name = function.name;
        let fp = self.locals[&name];
        let state = Activation::new(function, fp);
        self.callstack.push(state);

        self.status = Status::Suspended;

        Ok(EmulatorEvent::Suspended)
    }

    /// Resume execution when the emulator suspended due to a breakpoint
    #[inline]
    pub fn resume(&mut self) -> Result<EmulatorEvent, EmulationError> {
        assert_matches!(
            self.status,
            Status::Suspended,
            "cannot resume the emulator from any state other than suspended"
        );
        self.run()
    }
}

/// Pops the top element off the advice stack
macro_rules! adv_pop {
    ($emu:ident) => {
        $emu.advice_stack.pop().expect("advice stack is empty")
    };

    ($emu:ident, $msg:literal) => {
        $emu.advice_stack.pop().expect($msg)
    };

    ($emu:ident, $msg:literal, $($arg:expr),+) => {
        match $emu.advice_stack.pop() {
            Some(value) => value,
            None => panic!($msg, $($arg),*),
        }
    }
}

/// Pops the top word off the advice stack
macro_rules! adv_popw {
    ($emu:ident) => {
        $emu.advice_stack.popw().expect("advice stack does not contain a full word")
    };

    ($emu:ident, $msg:literal) => {
        $emu.advice_stack.popw().expect($msg)
    };

    ($emu:ident, $msg:literal, $($arg:expr),+) => {{
        match $emu.advice_stack.popw() {
            Some(value) => value,
            None => panic!($msg, $($arg),*),
        }
    }}
}

/// Pops the top element off the stack
macro_rules! pop {
    ($emu:ident) => {
        $emu.stack.pop().expect("operand stack is empty")
    };

    ($emu:ident, $msg:literal) => {
        $emu.stack.pop().expect($msg)
    };

    ($emu:ident, $msg:literal, $($arg:expr),+) => {
        match $emu.stack.pop() {
            Some(value) => value,
            None => panic!($msg, $($arg),*),
        }
    }
}

/// Peeks the top element of the stack
macro_rules! peek {
    ($emu:ident) => {
        $emu.stack.peek().expect("operand stack is empty")
    };

    ($emu:ident, $msg:literal) => {
        $emu.stack.peek().expect($msg)
    };

    ($emu:ident, $msg:literal, $($arg:expr),+) => {
        match $emu.stack.peek() {
            Some(value) => value,
            None => panic!($msg, $($arg),*),
        }
    }
}

/// Pops the top word off the stack
macro_rules! popw {
    ($emu:ident) => {
        $emu.stack.popw().expect("operand stack does not contain a full word")
    };

    ($emu:ident, $msg:literal) => {
        $emu.stack.popw().expect($msg)
    };

    ($emu:ident, $msg:literal, $($arg:expr),+) => {{
        match $emu.stack.popw() {
            Some(value) => value,
            None => panic!($msg, $($arg),*),
        }
    }}
}

/// Pops the top two elements off the stack, returning them in order of appearance
macro_rules! pop2 {
    ($emu:ident) => {{
        let b = pop!($emu);
        let a = pop!($emu);
        (b, a)
    }};
}

/// Pops a u32 value from the top of the stack, and asserts if it is out of range
macro_rules! pop_u32 {
    ($emu:ident) => {{
        let value = pop!($emu).as_int();
        assert!(value < 2u64.pow(32), "assertion failed: {value} is not a valid u32, value is out of range");
        value as u32
    }};

    ($emu:ident, $format:literal $(, $args:expr)*) => {{
        let value = pop!($emu).as_int();
        assert!(value < 2u64.pow(32), $format, value, $($args),*);
        value as u32
    }}
}

/// Peeks a u32 value from the top of the stack, and asserts if it is out of range
#[allow(unused)]
macro_rules! peek_u32 {
    ($emu:ident) => {{
        let value = peek!($emu).as_int();
        assert!(value < 2u64.pow(32), "assertion failed: {value} is not a valid u32, value is out of range");
        value as u32
    }};

    ($emu:ident, $format:literal $(, $args:expr)*) => {{
        let value = peek!($emu).as_int();
        assert!(value < 2u64.pow(32), $format, value, $($args),*);
        value as u32
    }}
}

/// Pops a pointer value from the top of the stack, and asserts if it is not a valid boolean
macro_rules! pop_addr {
    ($emu:ident) => {{
        let addr = pop_u32!($emu, "expected valid 32-bit address, got {}") as usize;
        assert!(
            addr < $emu.memory.len(),
            "out of bounds memory access, addr: {}, available memory: {}",
            addr,
            $emu.memory.len()
        );
        addr
    }};
}

/// Pops a boolean value from the top of the stack, and asserts if it is not a valid boolean
macro_rules! pop_bool {
    ($emu:ident) => {{
        let value = pop!($emu).as_int();
        assert!(
            value < 2,
            "assertion failed: {value} is not a valid boolean, value must be either 1 or 0"
        );
        value == 1
    }};
}

/// Applies a binary operator that produces a result of the same input type:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop {
    ($emu:ident, $op:ident) => {{
        use core::ops::*;
        let b = pop!($emu);
        let a = pop!($emu);
        $emu.stack.push(a.$op(b));
    }};

    ($emu:ident, $op:ident, $imm:expr) => {{
        use core::ops::*;
        let a = pop!($emu);
        $emu.stack.push(a.$op($imm));
    }};
}

/// Applies a binary operator to two u32 values, either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop32 {
    ($emu:ident, $op:ident) => {{
        #[allow(unused)]
        use core::ops::*;
        let b = pop_u32!($emu);
        let a = pop_u32!($emu);
        $emu.stack.push_u32(a.$op(b));
    }};

    ($emu:ident, $op:ident, $imm:expr) => {{
        #[allow(unused)]
        use core::ops::*;
        let a = pop_u32!($emu);
        $emu.stack.push_u32(a.$op($imm));
    }};
}

/// Applies a checked binary operator to two u32 values, either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop_unchecked_u32 {
    ($emu:ident, $op:ident) => {{
        #[allow(unused)]
        use core::ops::*;
        let b = pop!($emu);
        let a = pop!($emu);
        $emu.stack.push(Felt::new(a.as_int().$op(b.as_int())));
    }};

    ($emu:ident, $op:ident, $imm:expr) => {{
        #[allow(unused)]
        use core::ops::*;
        let a = pop!($emu);
        $emu.stack.push(Felt::new(a.as_int().$op($imm)));
    }};
}

/// Applies an overflowing binary operator to two u32 values, either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop_overflowing_u32 {
    ($emu:ident, $op:ident) => {{
        paste::paste! {
            binop_overflowing_u32_impl!($emu, [<overflowing_ $op>]);
        }
    }};

    ($emu:ident, $op:ident, $imm:expr) => {{
        paste::paste! {
            binop_overflowing_u32_impl!($emu, [<overflowing_ $op>], $imm);
        }
    }};
}

#[doc(hidden)]
macro_rules! binop_overflowing_u32_impl {
    ($emu:ident, $op:ident) => {{
        #[allow(unused)]
        use core::ops::*;
        let b = pop_u32!($emu);
        let a = pop_u32!($emu);
        let (result, overflowed) = a.$op(b);
        $emu.stack.push_u32(result);
        $emu.stack.push_u8(overflowed as u8);
    }};

    ($emu:ident, $op:ident, $imm:expr) => {{
        #[allow(unused)]
        use core::ops::*;
        let a = pop_u32!($emu);
        let (result, overflowed) = a.$op($imm);
        $emu.stack.push_u32(result);
        $emu.stack.push_u8(overflowed as u8);
    }};
}

/// Applies a wrapping binary operator to two u32 values, either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop_wrapping_u32 {
    ($emu:ident, $op:ident) => {{
        paste::paste! {
            binop_wrapping_u32_impl!($emu, [<wrapping_ $op>]);
        }
    }};

    ($emu:ident, $op:ident, $imm:expr) => {{
        paste::paste! {
            binop_wrapping_u32_impl!($emu, [<wrapping_ $op>], $imm);
        }
    }};
}

#[doc(hidden)]
macro_rules! binop_wrapping_u32_impl {
    ($emu:ident, $op:ident) => {{
        #[allow(unused)]
        use core::ops::*;
        let b = pop_u32!($emu);
        let a = pop_u32!($emu);
        $emu.stack.push_u32(a.$op(b));
    }};

    ($emu:ident, $op:ident, $imm:expr) => {{
        #[allow(unused)]
        use core::ops::*;
        let a = pop_u32!($emu);
        $emu.stack.push_u32(a.$op($imm));
    }};
}

/// Applies a binary comparison operator, to either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! comparison {
    ($emu:ident, $op:ident) => {{
        let b = pop!($emu).as_int();
        let a = pop!($emu).as_int();
        let result: bool = a.$op(&b);
        $emu.stack.push_u8(result as u8);
    }};

    ($emu:ident, $op:ident, $imm:expr) => {{
        let a = pop!($emu).as_int();
        let result: bool = a.$op(&$imm);
        $emu.stack.push_u8(result as u8);
    }};
}

impl Emulator {
    /// Step the emulator forward one cycle, returning the type of event produced
    /// during that cycle, or an error.
    pub fn step(&mut self) -> Result<EmulatorEvent, EmulationError> {
        match self
            .breakpoints
            .handle_event(EmulatorEvent::CycleStart(self.clk), self.current_ip())
        {
            Some(bp) => {
                self.status = Status::Suspended;
                Ok(EmulatorEvent::Breakpoint(bp))
            }
            None => match self.run_once() {
                Ok(EmulatorEvent::Stopped) => {
                    self.status = Status::Stopped;
                    Ok(EmulatorEvent::Stopped)
                }
                suspended @ Ok(_) => {
                    self.status = Status::Suspended;
                    suspended
                }
                Err(err) => {
                    self.status = Status::Faulted(err.clone());
                    Err(err)
                }
            },
        }
    }

    /// Step the emulator forward one step, but stepping past any nested blocks or function calls,
    /// returning the type of event produced during that cycle, or an error.
    pub fn step_over(&mut self) -> Result<EmulatorEvent, EmulationError> {
        match self.step_over.take() {
            None => self.step(),
            Some(ip) => {
                self.breakpoints.set(Breakpoint::At(ip));
                match self.run() {
                    Ok(EmulatorEvent::Stopped) => {
                        self.status = Status::Stopped;
                        Ok(EmulatorEvent::Stopped)
                    }
                    Ok(EmulatorEvent::Breakpoint(bp)) | Err(EmulationError::BreakpointHit(bp)) => {
                        self.status = Status::Suspended;
                        if self.current_ip().map(|ix| ix.ip) == Some(ip) {
                            return Ok(EmulatorEvent::Suspended);
                        }
                        Ok(EmulatorEvent::Breakpoint(bp))
                    }
                    Ok(event) => panic!(
                        "unexpected event produced by emulator loop when stepping over: {event:?}"
                    ),
                    Err(err) => {
                        self.status = Status::Faulted(err.clone());
                        Err(err)
                    }
                }
            }
        }
    }

    /// Step the emulator forward until control returns from the current function.
    pub fn step_out(&mut self) -> Result<EmulatorEvent, EmulationError> {
        let current_function = self.current_function();
        self.breakpoints.break_on_return(true);
        match self.run() {
            Ok(EmulatorEvent::Stopped) => {
                self.status = Status::Stopped;
                Ok(EmulatorEvent::Stopped)
            }
            Ok(EmulatorEvent::Breakpoint(bp)) | Err(EmulationError::BreakpointHit(bp)) => {
                self.status = Status::Suspended;
                if self.current_function() == current_function {
                    return Ok(EmulatorEvent::Suspended);
                }
                Ok(EmulatorEvent::Breakpoint(bp))
            }
            Ok(event) => {
                panic!("unexpected event produced by emulator loop when stepping over: {event:?}")
            }
            Err(err) => {
                self.status = Status::Faulted(err.clone());
                Err(err)
            }
        }
    }

    /// Run the emulator until all calls are completed, the cycle budget is exhausted,
    /// or a breakpoint is hit.
    ///
    /// It is expected that the caller has set up the operand stack with the correct
    /// number of arguments. If not, undefined behavior (from the perspective of the
    /// MASM program) will result.
    #[inline(never)]
    fn run(&mut self) -> Result<EmulatorEvent, EmulationError> {
        // This is the core interpreter loop for MASM IR, it runs until one of the
        // following occurs:
        //
        // * We run out of code to execute, i.e. the function is returning normally
        // * Execution was explicitly aborted from within the function
        // * Execution traps due to a MASM invariant being violated, indicating the
        // code is malformed.
        // * Execution traps due to a runtime system error, e.g. out of memory
        // * Execution traps due to exceeding the predefined execution budget
        // * Execution breaks due to a breakpoint
        let mut event = self.step()?;
        loop {
            match event {
                // We should suspend when encountering these events
                event @ EmulatorEvent::Breakpoint(_) => break Ok(event),
                event @ EmulatorEvent::Stopped => break Ok(event),
                ev => {
                    // We must handle catching certain breakpoints when using this event loop
                    match self.breakpoints.handle_event(ev, self.current_ip()) {
                        Some(bp) => break Ok(EmulatorEvent::Breakpoint(bp)),
                        None => match ev {
                            // There was no code remaining in the current function, effectively
                            // returning from it. Since no instructions were dispatched, we don't
                            // count the cycle, and resume immediately at the continuation point
                            // in the caller
                            EmulatorEvent::ExitFunction(_) => {
                                if self.callstack.is_empty() {
                                    break Ok(EmulatorEvent::Stopped);
                                }
                                event = self.run_once()?;
                                continue;
                            }
                            _ => {
                                event = self.step()?;
                            }
                        },
                    }
                }
            }
        }
    }

    #[inline(never)]
    fn run_once(&mut self) -> Result<EmulatorEvent, EmulationError> {
        const U32_P: u64 = 2u64.pow(32);

        // If there are no more activation records, we're done
        if self.callstack.is_empty() {
            return Ok(EmulatorEvent::Stopped);
        }

        // Terminate execution early if we reach a predetermined number of cycles
        self.clk += 1;
        if self.clk > self.clk_limit {
            return Err(EmulationError::CycleBudgetExceeded);
        }

        let mut state = self.callstack.pop().unwrap();
        let current_function = state.function().name;

        // Reset the next instruction to break at when stepping over instructions
        self.step_over = None;

        // If we have breakpoints set that require it, we may need to
        // break execution before executing the instruction that is pending
        if self.breakpoints.break_on_return || self.breakpoints.has_break_on_reached() {
            match state.peek() {
                Some(Instruction { ip, .. })
                    if self.breakpoints.should_break_at(ip.block, ip.index) =>
                {
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::Breakpoint(BreakpointEvent::Reached(ip)));
                }
                None if self.breakpoints.break_on_return => {
                    self.callstack.push(state);
                    self.breakpoints.break_on_return(false);
                    return Ok(EmulatorEvent::Breakpoint(BreakpointEvent::StepOut));
                }
                _ => (),
            }
        }

        // Advance the instruction pointer, returning the instruction
        // that it previously pointed to, along with what, if any,
        // control flow effect occurred to reach it
        let ix_with_op = state.next();
        if let Some(ix_with_op) = ix_with_op {
            if self.print_trace {
                eprintln!("mem: {:?}", self.memory);
                eprintln!("stk: {}", self.stack.debug());
                eprintln!("op>: {:?}", ix_with_op.op);
            }
            match ix_with_op.op {
                Op::Padw => {
                    self.stack.padw();
                }
                Op::Push(v) => {
                    self.stack.push(v);
                }
                Op::Push2([a, b]) => {
                    self.stack.push(a);
                    self.stack.push(b);
                }
                Op::Pushw(word) => {
                    self.stack.pushw(word);
                }
                Op::PushU8(i) => {
                    self.stack.push_u8(i);
                }
                Op::PushU16(i) => {
                    self.stack.push_u16(i);
                }
                Op::PushU32(i) => {
                    self.stack.push_u32(i);
                }
                Op::Drop => {
                    self.stack.drop();
                }
                Op::Dropw => {
                    self.stack.dropw();
                }
                Op::Dup(pos) => {
                    self.stack.dup(pos as usize);
                }
                Op::Dupw(pos) => {
                    self.stack.dupw(pos as usize);
                }
                Op::Swap(pos) => {
                    self.stack.swap(pos as usize);
                }
                Op::Swapw(pos) => {
                    self.stack.swapw(pos as usize);
                }
                Op::Swapdw => {
                    self.stack.swapdw();
                }
                Op::Movup(pos) => {
                    self.stack.movup(pos as usize);
                }
                Op::Movupw(pos) => {
                    self.stack.movupw(pos as usize);
                }
                Op::Movdn(pos) => {
                    self.stack.movdn(pos as usize);
                }
                Op::Movdnw(pos) => {
                    self.stack.movdnw(pos as usize);
                }
                Op::Cswap => {
                    let cond = pop_bool!(self);
                    if cond {
                        self.stack.swap(1);
                    }
                }
                Op::Cswapw => {
                    let cond = pop_bool!(self);
                    if cond {
                        self.stack.swapw(1);
                    }
                }
                Op::Cdrop => {
                    let cond = pop_bool!(self);
                    let (b, a) = pop2!(self);
                    if cond {
                        self.stack.push(b);
                    } else {
                        self.stack.push(a);
                    }
                }
                Op::Cdropw => {
                    let cond = pop_bool!(self);
                    let b = popw!(self);
                    let a = popw!(self);
                    if cond {
                        self.stack.pushw(b);
                    } else {
                        self.stack.pushw(a);
                    }
                }
                Op::AdvPush(n) => {
                    assert!(
                        n > 0 && n <= 16,
                        "invalid adv_push operand: must be a value in the range 1..=16, got {n}"
                    );
                    for _ in 0..n {
                        let value = adv_pop!(self);
                        self.stack.push(value);
                    }
                }
                Op::AdvLoadw => {
                    let word = adv_popw!(self);
                    self.stack.dropw();
                    self.stack.pushw(word);
                }
                Op::AdvPipe => {
                    // We're overwriting the first two words, C and B, so drop them
                    self.stack.dropw();
                    self.stack.dropw();
                    // The third word, A, is saved, but unused
                    let a = popw!(self);
                    // The memory address to write to is the first element of the fourth word
                    let addr = pop_addr!(self);
                    // We update the original address += 2, and restore A
                    self.stack.push_u32(addr as u32 + 2);
                    self.stack.pushw(a);
                    // We then move words D and E from the advice stack to the operand stack,
                    // while also writing those words to memory starting at `addr`
                    let d = adv_popw!(self);
                    self.stack.pushw(d);
                    self.memory[addr] = d;
                    let e = adv_popw!(self);
                    self.stack.pushw(e);
                    self.memory[addr + 1] = e;
                    // Lastly, since we performed a memory write here, suspend like we do for other
                    // memory-modifying ops
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::MemoryWrite {
                        addr: addr as u32,
                        size: 16,
                    });
                }
                Op::AdvInjectPushU64Div => {
                    const HI_MASK: u64 = u64::MAX << 32;
                    const LO_MASK: u64 = u32::MAX as u64;
                    let b_hi = pop_u32!(self) as u64;
                    let b_lo = pop_u32!(self) as u64;
                    let b = (b_hi << 32) | b_lo;
                    assert!(b > 0, "assertion failed: division by zero");
                    let a_hi = pop_u32!(self) as u64;
                    let a_lo = pop_u32!(self) as u64;
                    let a = (a_hi << 32) | a_lo;
                    let q = a / b;
                    let q_hi = (q & HI_MASK) >> 32;
                    let q_lo = q & LO_MASK;
                    let r = a % b;
                    let r_hi = (r & HI_MASK) >> 32;
                    let r_lo = r & LO_MASK;
                    self.advice_stack.push_u32(r_hi as u32);
                    self.advice_stack.push_u32(r_lo as u32);
                    self.advice_stack.push_u32(q_hi as u32);
                    self.advice_stack.push_u32(q_lo as u32);
                    self.stack.push_u32(a_lo as u32);
                    self.stack.push_u32(a_hi as u32);
                    self.stack.push_u32(b_lo as u32);
                    self.stack.push_u32(b_hi as u32);
                }
                Op::AdvInjectInsertMem
                | Op::AdvInjectInsertHperm
                | Op::AdvInjectInsertHdword
                | Op::AdvInjectInsertHdwordImm(_)
                | Op::AdvInjectPushMTreeNode
                | Op::AdvInjectPushMapVal
                | Op::AdvInjectPushMapValImm(_)
                | Op::AdvInjectPushMapValN
                | Op::AdvInjectPushMapValNImm(_) => unimplemented!(),
                Op::Assert => {
                    let cond = pop_bool!(self);
                    assert!(cond, "assertion failed: expected true, got false");
                }
                Op::Assertz => {
                    let cond = pop_bool!(self);
                    assert!(!cond, "assertion failed: expected false, got true");
                }
                Op::AssertEq => {
                    let (b, a) = pop2!(self);
                    assert_eq!(a, b, "equality assertion failed");
                }
                Op::AssertEqw => {
                    let b = popw!(self);
                    let a = popw!(self);
                    assert_eq!(a, b, "equality assertion failed");
                }
                Op::LocAddr(id) => {
                    let addr = state.fp() + id.as_usize() as u32;
                    debug_assert!(addr < self.memory.len() as u32);
                    self.stack.push_u32(addr * 16);
                }
                Op::LocStore(id) => {
                    let addr = (state.fp() + id.as_usize() as u32) as usize;
                    debug_assert!(addr < self.memory.len());
                    let value = pop!(self);
                    self.memory[addr][0] = value;
                    return Ok(EmulatorEvent::MemoryWrite {
                        addr: addr as u32,
                        size: 4,
                    });
                }
                Op::LocStorew(id) => {
                    let addr = (state.fp() + id.as_usize() as u32) as usize;
                    assert!(addr < self.memory.len() - 4, "out of bounds memory access");
                    let word =
                        self.stack.peekw().expect("operand stack does not contain a full word");
                    self.memory[addr] = word;
                    return Ok(EmulatorEvent::MemoryWrite {
                        addr: addr as u32,
                        size: 16,
                    });
                }
                Op::LocLoad(id) => {
                    let addr = (state.fp() + id.as_usize() as u32) as usize;
                    debug_assert!(addr < self.memory.len());
                    self.stack.push(self.memory[addr][0]);
                }
                Op::LocLoadw(id) => {
                    let addr = (state.fp() + id.as_usize() as u32) as usize;
                    debug_assert!(addr < self.memory.len());
                    self.stack.dropw();
                    self.stack.pushw(self.memory[addr]);
                }
                Op::MemLoad => {
                    let addr = pop_addr!(self);
                    self.stack.push(self.memory[addr][0]);
                }
                Op::MemLoadImm(addr) => {
                    let addr = addr as usize;
                    assert!(addr < self.memory.len(), "out of bounds memory access");
                    self.stack.push(self.memory[addr][0]);
                }
                Op::MemLoadw => {
                    let addr = pop_addr!(self);
                    self.stack.dropw();
                    let mut word = self.memory[addr];
                    word.reverse();
                    self.stack.pushw(word);
                }
                Op::MemLoadwImm(addr) => {
                    let addr = addr as usize;
                    assert!(addr < self.memory.len() - 4, "out of bounds memory access");
                    self.stack.dropw();
                    let mut word = self.memory[addr];
                    word.reverse();
                    self.stack.pushw(word);
                }
                Op::MemStore => {
                    let addr = pop_addr!(self);
                    let value = pop!(self);
                    self.memory[addr][0] = value;
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::MemoryWrite {
                        addr: addr as u32,
                        size: 4,
                    });
                }
                Op::MemStoreImm(addr) => {
                    let addr = addr as usize;
                    assert!(addr < self.memory.len(), "out of bounds memory access");
                    let value = self.stack.pop().expect("operand stack is empty");
                    self.memory[addr][0] = value;
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::MemoryWrite {
                        addr: addr as u32,
                        size: 4,
                    });
                }
                Op::MemStorew => {
                    let addr = pop_addr!(self);
                    let mut word =
                        self.stack.peekw().expect("operand stack does not contain a full word");
                    word.reverse();
                    self.memory[addr] = word;
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::MemoryWrite {
                        addr: addr as u32,
                        size: 16,
                    });
                }
                Op::MemStorewImm(addr) => {
                    let addr = addr as usize;
                    assert!(addr < self.memory.len() - 4, "out of bounds memory access");
                    let mut word =
                        self.stack.peekw().expect("operand stack does not contain a full word");
                    word.reverse();
                    self.memory[addr] = word;
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::MemoryWrite {
                        addr: addr as u32,
                        size: 16,
                    });
                }
                Op::If(then_blk, else_blk) => {
                    self.step_over = Some(state.ip());
                    let cond = pop_bool!(self);
                    let dest = if cond {
                        state.enter_block(then_blk);
                        then_blk
                    } else {
                        state.enter_block(else_blk);
                        else_blk
                    };
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::Jump(dest));
                }
                Op::While(body_blk) => {
                    self.step_over = Some(state.ip());
                    let cond = pop_bool!(self);
                    if cond {
                        state.enter_while_loop(body_blk);
                        self.callstack.push(state);
                        return Ok(EmulatorEvent::EnterLoop(body_blk));
                    }
                }
                Op::Repeat(n, body_blk) => {
                    self.step_over = Some(state.ip());
                    state.repeat_block(body_blk, n);
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::EnterLoop(body_blk));
                }
                Op::Exec(callee) => {
                    let fun = self
                        .functions
                        .get(&callee)
                        .cloned()
                        .ok_or(EmulationError::UndefinedFunction(callee))?;
                    self.step_over = Some(state.ip());
                    match fun {
                        Stub::Asm(ref function) => {
                            let fp = self.locals[&function.name];
                            let callee_state = Activation::new(function.clone(), fp);
                            // Suspend caller and scheduled callee next
                            self.callstack.push(state);
                            self.callstack.push(callee_state);
                            return Ok(EmulatorEvent::EnterFunction(function.name));
                        }
                        Stub::Native(_function) => unimplemented!(),
                    }
                }
                Op::Call(_callee) | Op::Syscall(_callee) => unimplemented!(),
                Op::Add => binop!(self, add),
                Op::AddImm(imm) => binop!(self, add, imm),
                Op::Sub => binop!(self, sub),
                Op::SubImm(imm) => binop!(self, sub, imm),
                Op::Mul => binop!(self, mul),
                Op::MulImm(imm) => binop!(self, mul, imm),
                Op::Div => binop!(self, div),
                Op::DivImm(imm) => binop!(self, div, imm),
                Op::Neg => {
                    let a = self.stack.pop().expect("operand stack is empty");
                    self.stack.push(-a);
                }
                Op::Inv => {
                    let a = self.stack.pop().expect("operand stack is empty");
                    self.stack.push(a.inv());
                }
                Op::Incr => binop!(self, add, Felt::ONE),
                Op::Ilog2 => {
                    let a = peek!(self).as_int();
                    assert!(a > 0, "invalid ilog2 argument: expected {a} to be > 0");
                    self.advice_stack.push_u32(a.ilog2());
                }
                Op::Pow2 => {
                    let a = pop!(self).as_int();
                    assert!(
                        a < 64,
                        "invalid power of two: expected {a} to be a value less than 64"
                    );
                    let two = Felt::new(2);
                    self.stack.push(two.exp(a));
                }
                Op::Exp => {
                    let (b, a) = pop2!(self);
                    let b = b.as_int();
                    assert!(
                        b < 64,
                        "invalid power of two: expected {b} to be a value less than 64"
                    );
                    self.stack.push(a.exp(b));
                }
                Op::ExpImm(pow) | Op::ExpBitLength(pow) => {
                    let pow = pow as u64;
                    let a = pop!(self);
                    assert!(
                        pow < 64,
                        "invalid power of two: expected {pow} to be a value less than 64"
                    );
                    self.stack.push(a.exp(pow));
                }
                Op::Not => {
                    let a = pop_bool!(self);
                    self.stack.push_u8(!a as u8);
                }
                Op::And => {
                    let b = pop_bool!(self);
                    let a = pop_bool!(self);
                    self.stack.push_u8((b & a) as u8);
                }
                Op::AndImm(b) => {
                    let a = pop_bool!(self);
                    self.stack.push_u8((a & b) as u8);
                }
                Op::Or => {
                    let b = pop_bool!(self);
                    let a = pop_bool!(self);
                    self.stack.push_u8((b | a) as u8);
                }
                Op::OrImm(b) => {
                    let a = pop_bool!(self);
                    self.stack.push_u8((a | b) as u8);
                }
                Op::Xor => {
                    let b = pop_bool!(self);
                    let a = pop_bool!(self);
                    self.stack.push_u8((b ^ a) as u8);
                }
                Op::XorImm(b) => {
                    let a = pop_bool!(self);
                    self.stack.push_u8((a ^ b) as u8);
                }
                Op::Eq => comparison!(self, eq),
                Op::EqImm(imm) => comparison!(self, eq, imm.as_int()),
                Op::Neq => comparison!(self, ne),
                Op::NeqImm(imm) => comparison!(self, ne, imm.as_int()),
                Op::Gt => comparison!(self, gt),
                Op::GtImm(imm) => comparison!(self, gt, imm.as_int()),
                Op::Gte => comparison!(self, ge),
                Op::GteImm(imm) => comparison!(self, ge, imm.as_int()),
                Op::Lt => comparison!(self, lt),
                Op::LtImm(imm) => comparison!(self, lt, imm.as_int()),
                Op::Lte => comparison!(self, le),
                Op::LteImm(imm) => comparison!(self, le, imm.as_int()),
                Op::IsOdd => {
                    let a = pop!(self).as_int();
                    self.stack.push_u8((a % 2 == 0) as u8);
                }
                Op::Eqw => {
                    let b = popw!(self);
                    let a = popw!(self);
                    self.stack.push_u8((a == b) as u8);
                }
                Op::Clk => {
                    self.stack.push(Felt::new(self.clk as u64));
                }
                Op::Sdepth => {
                    self.stack.push(Felt::new(self.stack.len() as u64));
                }
                Op::U32Test => {
                    let top = self.stack.peek().expect("operand stack is empty").as_int();
                    self.stack.push_u8((top < U32_P) as u8);
                }
                Op::U32Testw => {
                    let word = self.stack.peekw().expect("operand stack is empty");
                    let is_true = word.iter().all(|elem| elem.as_int() < U32_P);
                    self.stack.push_u8(is_true as u8);
                }
                Op::U32Assert => {
                    let top = self.stack.peek().expect("operand stack is empty").as_int();
                    assert!(top < U32_P, "assertion failed: {top} is larger than 2^32");
                }
                Op::U32Assert2 => {
                    let a = self.stack.peek().expect("operand stack is empty").as_int();
                    let b = self.stack.peek().expect("operand stack is empty").as_int();
                    assert!(a < U32_P, "assertion failed: {a} is larger than 2^32");
                    assert!(b < U32_P, "assertion failed: {b} is larger than 2^32");
                }
                Op::U32Assertw => {
                    let word = self.stack.peekw().expect("operand stack is empty");
                    for elem in word.into_iter() {
                        assert!(
                            elem.as_int() < U32_P,
                            "assertion failed: {elem} is larger than 2^32"
                        );
                    }
                }
                Op::U32Cast => {
                    let a = pop!(self).as_int();
                    self.stack.push(Felt::new(a % U32_P));
                }
                Op::U32Split => {
                    let a = pop!(self).as_int();
                    let hi = a / U32_P;
                    let lo = a % U32_P;
                    self.stack.push(Felt::new(lo));
                    self.stack.push(Felt::new(hi));
                }
                Op::U32OverflowingAdd => binop_overflowing_u32!(self, add),
                Op::U32OverflowingAddImm(imm) => binop_overflowing_u32!(self, add, imm),
                Op::U32WrappingAdd => binop_wrapping_u32!(self, add),
                Op::U32WrappingAddImm(imm) => binop_wrapping_u32!(self, add, imm),
                Op::U32OverflowingAdd3 => todo!(),
                Op::U32WrappingAdd3 => todo!(),
                Op::U32OverflowingSub => binop_overflowing_u32!(self, sub),
                Op::U32OverflowingSubImm(imm) => binop_overflowing_u32!(self, sub, imm),
                Op::U32WrappingSub => binop_wrapping_u32!(self, sub),
                Op::U32WrappingSubImm(imm) => binop_wrapping_u32!(self, sub, imm),
                Op::U32OverflowingMul => binop_overflowing_u32!(self, mul),
                Op::U32OverflowingMulImm(imm) => binop_overflowing_u32!(self, mul, imm),
                Op::U32WrappingMul => binop_wrapping_u32!(self, mul),
                Op::U32WrappingMulImm(imm) => binop_wrapping_u32!(self, mul, imm),
                Op::U32OverflowingMadd => {
                    let b = pop_u32!(self) as u64;
                    let a = pop_u32!(self) as u64;
                    let c = pop_u32!(self) as u64;
                    let result = a * b + c;
                    let d = result % 2u64.pow(32);
                    let e = result / 2u64.pow(32);
                    self.stack.push(Felt::new(d));
                    self.stack.push(Felt::new(e));
                }
                Op::U32WrappingMadd => {
                    let b = pop_u32!(self) as u64;
                    let a = pop_u32!(self) as u64;
                    let c = pop_u32!(self) as u64;
                    let d = (a * b + c) % 2u64.pow(32);
                    self.stack.push(Felt::new(d));
                }
                Op::U32Div => binop_unchecked_u32!(self, div),
                Op::U32DivImm(imm) => binop_unchecked_u32!(self, div, imm as u64),
                Op::U32Mod => {
                    let b = pop!(self).as_int();
                    let a = pop!(self).as_int();
                    self.stack.push(Felt::new(a % b));
                }
                Op::U32ModImm(imm) => {
                    let a = pop!(self).as_int();
                    self.stack.push(Felt::new(a % imm as u64));
                }
                Op::U32DivMod => {
                    let b = pop!(self).as_int();
                    let a = pop!(self).as_int();
                    self.stack.push(Felt::new(a / b));
                    self.stack.push(Felt::new(a % b));
                }
                Op::U32DivModImm(b) => {
                    let b = b as u64;
                    let a = pop!(self).as_int();
                    self.stack.push(Felt::new(a / b));
                    self.stack.push(Felt::new(a % b));
                }
                Op::U32And => binop32!(self, bitand),
                Op::U32Or => binop32!(self, bitor),
                Op::U32Xor => binop32!(self, bitxor),
                Op::U32Not => {
                    let a = pop_u32!(self);
                    self.stack.push_u32(!a);
                }
                Op::U32Shl => binop_wrapping_u32!(self, shl),
                Op::U32ShlImm(imm) => binop_wrapping_u32!(self, shl, imm),
                Op::U32Shr => binop_wrapping_u32!(self, shr),
                Op::U32ShrImm(imm) => binop_wrapping_u32!(self, shr, imm),
                Op::U32Rotl => {
                    let b = pop_u32!(self);
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.rotate_left(b));
                }
                Op::U32RotlImm(imm) => {
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.rotate_left(imm));
                }
                Op::U32Rotr => {
                    let b = pop_u32!(self);
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.rotate_right(b));
                }
                Op::U32RotrImm(imm) => {
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.rotate_right(imm));
                }
                Op::U32Popcnt => {
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.count_ones());
                }
                Op::U32Clz => {
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.leading_zeros());
                }
                Op::U32Clo => {
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.leading_ones());
                }
                Op::U32Ctz => {
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.trailing_zeros());
                }
                Op::U32Cto => {
                    let a = pop_u32!(self);
                    self.stack.push_u32(a.trailing_ones());
                }
                Op::U32Gt => comparison!(self, gt),
                Op::U32Gte => comparison!(self, ge),
                Op::U32Lt => comparison!(self, lt),
                Op::U32Lte => comparison!(self, le),
                Op::U32Min => {
                    let b = pop!(self).as_int();
                    let a = pop!(self).as_int();
                    self.stack.push(Felt::new(cmp::min(a, b)));
                }
                Op::U32Max => {
                    let b = pop!(self).as_int();
                    let a = pop!(self).as_int();
                    self.stack.push(Felt::new(cmp::max(a, b)));
                }
                Op::Breakpoint => {
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::Breakpoint(BreakpointEvent::Step));
                }
                Op::DebugStack => {
                    dbg!(self.stack.debug());
                }
                Op::DebugStackN(n) => {
                    dbg!(self.stack.debug().take(n as usize));
                }
                Op::DebugMemory
                | Op::DebugMemoryAt(_)
                | Op::DebugMemoryRange(..)
                | Op::DebugFrame
                | Op::DebugFrameAt(_)
                | Op::DebugFrameRange(..) => (),
                Op::Emit(_) | Op::Trace(_) => (),
                op => unimplemented!("missing opcode implementation for {op:?}"),
            }

            match ix_with_op.effect {
                ControlEffect::Repeat(_) | ControlEffect::Loopback => {
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::EnterLoop(ix_with_op.ip.block));
                }
                ControlEffect::Enter => {
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::Jump(ix_with_op.ip.block));
                }
                ControlEffect::Exit => {
                    self.callstack.push(state);
                    return Ok(EmulatorEvent::Jump(ix_with_op.ip.block));
                }
                ControlEffect::None => (),
            }

            // Suspend the current activation record
            self.callstack.push(state);

            Ok(EmulatorEvent::Suspended)
        } else {
            // No more code left in the current function
            Ok(EmulatorEvent::ExitFunction(current_function))
        }
    }
}