1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
mod breakpoints;
mod debug;
mod events;
mod functions;
mod memory;
use std::{cell::RefCell, cmp, rc::Rc, sync::Arc};
use memory::Memory;
use miden_assembly::{ast::ProcedureName, LibraryNamespace};
use midenc_hir::{assert_matches, Felt, FieldElement, FunctionIdent, Ident, OperandStack, Stack};
use rustc_hash::{FxHashMap, FxHashSet};
use self::functions::{Activation, Stub};
pub use self::{
breakpoints::*,
debug::{CallFrame, DebugInfo, DebugInfoWithStack},
events::{BreakpointEvent, ControlEffect, EmulatorEvent},
functions::{Instruction, InstructionWithOp, NativeFn},
};
use crate::{BlockId, Function, Module, Op, Program};
/// This type represents the various sorts of errors which can occur when
/// running the emulator on a MASM program. Some errors may result in panics,
/// but those which we can handle are represented here.
#[derive(Debug, Clone, thiserror::Error, PartialEq)]
pub enum EmulationError {
/// The given module is already loaded
#[error("unable to load module: '{0}' is already loaded")]
AlreadyLoaded(Ident),
/// The given function is already loaded
#[error("unable to load function: '{0}' is already loaded")]
DuplicateFunction(FunctionIdent),
/// The given function cannot be found
#[error("unable to invoke function: '{0}' is not defined")]
UndefinedFunction(FunctionIdent),
/// The emulator ran out of available memory
#[error("system limit: out of memory")]
OutOfMemory,
/// The emulator was terminated due to a program failing to terminate in its budgeted time
#[error("execution terminated prematurely: maximum cycle count reached")]
CycleBudgetExceeded,
/// A breakpoint was reached, so execution was suspended and can be resumed
#[error("execution suspended by breakpoint")]
BreakpointHit(BreakpointEvent),
/// An attempt was made to run the emulator without specifying an entrypoint
#[error("unable to start the emulator without an entrypoint")]
NoEntrypoint,
}
/// The size/type of pointers in the emulator
pub type Addr = u32;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct InstructionPointer {
/// The block in which the instruction pointer is located
pub block: BlockId,
/// The index of the instruction pointed to
pub index: usize,
}
impl InstructionPointer {
pub const fn new(block: BlockId) -> Self {
Self { block, index: 0 }
}
}
/// This enum represents the state transitions for the emulator.
///
/// * The emulator starts in `Init`
/// * Once some code is loaded, it becomes `Loaded`
/// * Once the emulator has started executing some code, it becomes `Started`
/// * If the emulator suspends due to a breakpoint or stepping, it becomes `Suspended`
/// * Once the emulator finishes executing whatever entrypoint was invoked, it becomes `Stopped`
/// * If an error occurs between `Started` and `Stopped`, it becomes `Faulted`
///
/// Once `Started`, it is not possible to `start` the emulator again until it reaches the
/// `Stopped` state, or is explicitly reset to the `Init` or `Loaded` states using `reset`
/// or `stop` respectively.
#[derive(Debug, Default)]
enum Status {
/// The emulator is in its initial state
///
/// In this state, the emulator cannot execute any code because there
/// is no code loaded yet.
#[default]
Init,
/// A program has been loaded into the emulator, but not yet started
///
/// This is the clean initial state from which a program or function can
/// start executing. Once the emulator leaves this status, the state of
/// the emulator is "dirty", i.e. it is no longer a clean slate.
Loaded,
/// The emulator has started running the current program, or a specified function.
Started,
/// The emulator is suspended, and awaiting resumption
Suspended,
/// The emulator finished running the current program, or a specified function,
/// and the state of the emulator has not yet been reset.
Stopped,
/// The emulator has stopped due to an error, and cannot proceed further
Faulted(EmulationError),
}
/// [Emulator] provides us with a means to execute our MASM IR directly
/// without having to emit "real" MASM and run it via the Miden VM.
/// In other words, it's a convenient way to run tests to verify the
/// expected behavior of a program without all of the baggage of the
/// Miden VM.
///
/// [Emulator] is necessarily a more limited execution environment:
///
/// * It only handles instructions which are defined in the [Op] enum
/// * Anything related to proving, calling contracts, etc. is not supported
/// * The default environment is empty, i.e. there are no Miden VM standard
/// library functions available. Users must emit Miden IR for all functions
/// they wish to call, or alternatively, provide native stubs.
pub struct Emulator {
status: Status,
functions: FxHashMap<FunctionIdent, Stub>,
locals: FxHashMap<FunctionIdent, Addr>,
modules_loaded: FxHashMap<Ident, Arc<Module>>,
modules_pending: FxHashSet<Ident>,
memory: Memory,
stack: OperandStack<Felt>,
advice_stack: OperandStack<Felt>,
callstack: Vec<Activation>,
hp_start: u32,
hp: u32,
lp_start: u32,
lp: u32,
breakpoints: BreakpointManager,
step_over: Option<InstructionPointer>,
clk: usize,
clk_limit: usize,
entrypoint: Option<FunctionIdent>,
print_trace: bool,
}
impl Default for Emulator {
fn default() -> Self {
Self::new(
Self::DEFAULT_HEAP_SIZE,
Self::DEFAULT_HEAP_START,
Self::DEFAULT_LOCALS_START,
false,
)
}
}
impl Emulator {
pub const DEFAULT_HEAP_SIZE: u32 = (4 * Self::PAGE_SIZE) / 16;
pub const DEFAULT_HEAP_START: u32 = (2 * Self::PAGE_SIZE) / 16;
pub const DEFAULT_LOCALS_START: u32 = (3 * Self::PAGE_SIZE) / 16;
const PAGE_SIZE: u32 = 64 * 1024;
/// Construct a new, empty emulator with:
///
/// * A linear memory heap of `memory_size` words
/// * The start of the usable heap set to `hp` (an address in words)
/// * The start of the reserved heap used for locals set to `lp` (an address in words)
pub fn new(memory_size: u32, hp: u32, lp: u32, print_stack: bool) -> Self {
let memory = Memory::new(memory_size as usize);
Self {
status: Status::Init,
functions: Default::default(),
locals: Default::default(),
modules_loaded: Default::default(),
modules_pending: Default::default(),
memory,
stack: Default::default(),
advice_stack: Default::default(),
callstack: vec![],
hp_start: hp,
hp,
lp_start: lp,
lp,
breakpoints: Default::default(),
step_over: None,
clk: 0,
clk_limit: usize::MAX,
entrypoint: None,
print_trace: print_stack,
}
}
/// Place a cap on the number of cycles the emulator will execute before failing with an error
pub fn set_max_cycles(&mut self, max: usize) {
self.clk_limit = max;
}
/// Returns all watchpoints that are currently managed by this [BreakpointManager]
pub fn watchpoints(&self) -> impl Iterator<Item = Watchpoint> + '_ {
self.breakpoints.watchpoints()
}
/// Returns all breakpoints that are currently managed by this [BreakpointManager]
pub fn breakpoints(&self) -> impl Iterator<Item = Breakpoint> {
self.breakpoints.breakpoints()
}
/// Sets a breakpoint for the emulator
pub fn set_breakpoint(&mut self, bp: Breakpoint) {
self.breakpoints.set(bp);
}
/// Removes the given breakpoint from the emulator
pub fn clear_breakpoint(&mut self, bp: Breakpoint) {
self.breakpoints.unset(bp);
}
/// Removes the all breakpoints from the emulator
pub fn clear_breakpoints(&mut self) {
self.breakpoints.unset_all();
}
/// Sets a watchpoint in the emulator
pub fn set_watchpoint(&mut self, addr: Addr, size: u32, mode: WatchMode) -> WatchpointId {
self.breakpoints.watch(addr, size, mode)
}
/// Sets a watchpoint in the emulator
pub fn clear_watchpoint(&mut self, id: WatchpointId) {
self.breakpoints.unwatch(id);
}
/// Set the watch mode for a [Watchpoint] using the identifier returned by [watch]
pub fn watchpoint_mode(&mut self, id: WatchpointId, mode: WatchMode) {
self.breakpoints.watch_mode(id, mode);
}
/// Clears all watchpoints
pub fn clear_watchpoints(&mut self) {
self.breakpoints.unwatch_all();
}
/// Clear all breakpoints and watchpoints
pub fn clear_break_and_watchpoints(&mut self) {
self.breakpoints.clear();
}
/// Get's debug information about the current emulator state
pub fn info(&self) -> Option<DebugInfo<'_>> {
let current = self.callstack.last()?;
// This returns the pending activation state for the current function,
// i.e. the next instruction to be executed, what control flow effects
// will occur to reach that instruction, and the actual instruction pointer
let ip = current.peek_with_op();
Some(DebugInfo {
cycle: self.clk,
function: current.function().name,
fp: current.fp(),
ip,
stack: &self.stack,
})
}
/// Get a stacktrace for the code running in the emulator
pub fn stacktrace(&self) -> Vec<CallFrame> {
let mut frames = Vec::with_capacity(self.callstack.len());
for frame in self.callstack.iter() {
frames.push(CallFrame {
function: frame.function().name,
fp: frame.fp(),
ip: Some(frame.ip()),
})
}
frames
}
/// Get the instruction pointer that will be next executed by the emulator
pub fn current_ip(&self) -> Option<Instruction> {
self.callstack.last().and_then(|activation| activation.peek())
}
/// Get the name of the function that is currently executing
pub fn current_function(&self) -> Option<FunctionIdent> {
self.callstack.last().map(|activation| activation.function().name)
}
/// Get access to the current state of the operand stack
pub fn stack(&mut self) -> &OperandStack<Felt> {
&self.stack
}
/// Get mutable access to the current state of the operand stack
pub fn stack_mut(&mut self) -> &mut OperandStack<Felt> {
&mut self.stack
}
/// Load `program` into this emulator
///
/// This resets the emulator state, as only one program may be loaded at a time.
pub fn load_program(&mut self, program: Arc<Program>) -> Result<(), EmulationError> {
// Ensure the emulator state is reset
if !matches!(self.status, Status::Init) {
self.reset();
}
let modules = program.unwrap_frozen_modules();
let mut cursor = modules.front();
while let Some(module) = cursor.clone_pointer() {
self.load_module(module)?;
cursor.move_next();
}
self.entrypoint = Some(program.entrypoint());
// TODO: Load data segments
self.status = Status::Loaded;
Ok(())
}
/// Load `module` into this emulator
///
/// An error is returned if a module with the same name is already loaded.
pub fn load_module(&mut self, module: Arc<Module>) -> Result<(), EmulationError> {
use std::collections::hash_map::Entry;
assert_matches!(
self.status,
Status::Init | Status::Loaded,
"cannot load modules once execution has started without calling stop() or reset() \
first"
);
match self.modules_loaded.entry(module.id) {
Entry::Occupied(_) => return Err(EmulationError::AlreadyLoaded(module.id)),
Entry::Vacant(entry) => {
entry.insert(module.clone());
}
}
// Register module dependencies
for import in module.imports.iter() {
let name = Ident::with_empty_span(import.name);
if self.modules_loaded.contains_key(&name) {
continue;
}
self.modules_pending.insert(name);
}
self.modules_pending.remove(&module.id);
// Load functions from this module
let functions = module.unwrap_frozen_functions();
let mut cursor = functions.front();
while let Some(function) = cursor.clone_pointer() {
self.load_function(function)?;
cursor.move_next();
}
self.status = Status::Loaded;
Ok(())
}
/// Reloads a loaded module, `name`.
///
/// This function will panic if the named module is not currently loaded.
pub fn reload_module(&mut self, module: Arc<Module>) -> Result<(), EmulationError> {
self.unload_module(module.id);
self.load_module(module)
}
/// Unloads a loaded module, `name`.
///
/// This function will panic if the named module is not currently loaded.
pub fn unload_module(&mut self, name: Ident) {
assert_matches!(
self.status,
Status::Loaded,
"cannot unload modules once execution has started without calling stop() or reset() \
first"
);
let prev = self
.modules_loaded
.remove(&name)
.expect("cannot reload a module that was not previously loaded");
// Unload all functions associated with the previous load
for f in prev.functions() {
self.functions.remove(&f.name);
self.locals.remove(&f.name);
}
// Determine if we need to add `name` to `modules_pending` if there are dependents still
// loaded
for module in self.modules_loaded.values() {
if module.imports.is_import(&name) {
self.modules_pending.insert(name);
break;
}
}
}
/// Load `function` into this emulator
fn load_function(&mut self, function: Arc<Function>) -> Result<(), EmulationError> {
let id = function.name;
if self.functions.contains_key(&id) {
return Err(EmulationError::DuplicateFunction(id));
}
let fp = self.lp;
self.lp += function.locals().len() as u32;
self.functions.insert(id, Stub::Asm(function));
self.locals.insert(id, fp);
Ok(())
}
/// Load `function` into this emulator, with the given identifier
///
/// Because we don't know the set of [FuncId] that have already been allocated,
/// we leave the choice up to the caller. We assert that functions do
/// not get defined twice to catch conflicts, just in case.
pub fn load_nif(
&mut self,
id: FunctionIdent,
function: Box<NativeFn>,
) -> Result<(), EmulationError> {
assert_matches!(
self.status,
Status::Init | Status::Loaded,
"cannot load nifs once execution has started without calling stop() or reset() first"
);
if self.functions.contains_key(&id) {
return Err(EmulationError::DuplicateFunction(id));
}
self.functions.insert(id, Stub::Native(Rc::new(RefCell::new(function))));
Ok(())
}
/// Allocate space for `value` on the emulator heap, and copy it's contents there.
///
/// NOTE: The smallest unit of addressable memory is 4 bytes (32 bits). If you provide
/// a value that is smaller than this, or is not a multiple of 4, the data will be padded
/// with zeroes to ensure that it is.
pub fn write_bytes_to_memory(&mut self, value: &[u8]) -> u32 {
let addr = self.hp;
if value.is_empty() {
return addr;
}
let mut elem_idx = 0;
for chunk in value.chunks(4) {
let elem = match chunk.len() {
4 => u32::from_le_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]),
3 => u32::from_le_bytes([chunk[0], chunk[1], chunk[2], 0]),
2 => u32::from_le_bytes([chunk[0], chunk[1], 0, 0]),
1 => u32::from_le_bytes([chunk[0], 0, 0, 0]),
0 => 0,
_ => unreachable!(),
};
if elem_idx == 4 {
elem_idx = 0;
assert!(self.hp + 1 < self.lp, "heap has overflowed into reserved region");
self.hp += 1;
}
self.memory[self.hp as usize][elem_idx] = Felt::new(elem as u64);
elem_idx += 1;
}
addr
}
/// Allocate enough words to hold `size` bytes of memory
///
/// Returns the pointer as a byte-addressable address
pub fn malloc(&mut self, size: usize) -> u32 {
let addr = self.hp;
if size == 0 {
return addr;
}
let size = size as u32;
let extra = size % 16;
let words = (size / 16) + (extra > 0) as u32;
assert!(self.hp + words < self.lp, "heap has overflowed into reserved region");
self.hp += words;
addr * 16
}
/// Write `value` to the word at `addr`, and element `index`
pub fn store(&mut self, addr: usize, value: Felt) {
use crate::NativePtr;
let ptr = NativePtr::from_ptr(addr.try_into().expect("invalid address"));
let addr = ptr.waddr as usize;
assert_eq!(ptr.offset, 0, "invalid store: unaligned address {addr:#?}");
assert!(addr < self.memory.len(), "invalid address");
self.memory[addr][ptr.index as usize] = value;
}
/// Start executing the current program by `invoke`ing the top-level initialization block (the
/// entrypoint).
///
/// This function will run the program to completion, and return the state of the operand stack
/// on exit.
///
/// NOTE: If no entrypoint has been loaded, an error is returned.
///
/// The emulator is automatically reset when it exits successfully.
pub fn start(&mut self) -> Result<OperandStack<Felt>, EmulationError> {
match self.status {
Status::Init => return Err(EmulationError::NoEntrypoint),
Status::Loaded => (),
Status::Stopped => {
self.stop();
}
Status::Started | Status::Suspended => panic!(
"cannot start the emulator when it is already started without calling stop() or \
reset() first"
),
Status::Faulted(ref err) => return Err(err.clone()),
}
let main_fn = self.entrypoint.unwrap_or_else(|| FunctionIdent {
module: LibraryNamespace::EXEC_PATH.into(),
function: ProcedureName::MAIN_PROC_NAME.into(),
});
// Run to completion
let stack = self.invoke(main_fn, &[]).map_err(|err| match err {
EmulationError::UndefinedFunction(f) if f == main_fn => EmulationError::NoEntrypoint,
err => err,
})?;
// Reset the emulator on exit
self.stop();
// Return the output contained on the operand stack
Ok(stack)
}
/// Start emulation by `enter`ing the top-level initialization block (the entrypoint).
///
/// This should be called instead of `start` when stepping through a program rather than
/// executing it to completion in one call.
///
/// NOTE: If no entrypoint has been loaded, an error is returned.
///
/// It is up to the caller to reset the emulator when the program exits, unlike `start`.
pub fn init(&mut self) -> Result<EmulatorEvent, EmulationError> {
match self.status {
Status::Init => return Err(EmulationError::NoEntrypoint),
Status::Loaded => (),
Status::Stopped => {
self.stop();
}
Status::Started | Status::Suspended => panic!(
"cannot start the emulator when it is already started without calling stop() or \
reset() first"
),
Status::Faulted(ref err) => return Err(err.clone()),
}
let main_fn = FunctionIdent {
module: LibraryNamespace::EXEC_PATH.into(),
function: ProcedureName::MAIN_PROC_NAME.into(),
};
// Step into the entrypoint
self.enter(main_fn, &[]).map_err(|err| match err {
EmulationError::UndefinedFunction(f) if f == main_fn => EmulationError::NoEntrypoint,
err => err,
})
}
/// Stop running the currently executing function, and reset the cycle counter, operand stack,
/// and linear memory.
///
/// This function preserves loaded code, breakpoints, and other configuration items.
///
/// If an attempt is made to run the emulator in the stopped state, a panic will occur
pub fn stop(&mut self) {
self.callstack.clear();
self.stack.clear();
self.memory.reset();
self.hp = self.hp_start;
self.lp = self.lp_start;
self.step_over = None;
self.clk = 0;
self.status = Status::Loaded;
}
/// Reset the emulator state to its initial state at creation.
///
/// In addition to resetting the cycle counter, operand stack, and linear memory,
/// this function also unloads all code, and clears all breakpoints. Only the
/// configuration used to initialize the emulator is preserved.
///
/// To use the emulator after calling this function, you must load a program or module again.
pub fn reset(&mut self) {
self.stop();
self.functions.clear();
self.locals.clear();
self.modules_loaded.clear();
self.modules_pending.clear();
self.breakpoints.clear();
self.status = Status::Init;
}
/// Run the emulator by invoking `callee` with `args` placed on the
/// operand stack in FIFO order.
///
/// If a fatal error occurs during emulation, `Err` is returned,
/// e.g. if `callee` has not been loaded.
///
/// When `callee` returns, it's result will be returned wrapped in `Ok`.
/// For functions with no return value, this will be `Ok(None)`, or all
/// others it will be `Ok(Some(value))`.
pub fn invoke(
&mut self,
callee: FunctionIdent,
args: &[Felt],
) -> Result<OperandStack<Felt>, EmulationError> {
assert_matches!(
self.status,
Status::Loaded,
"cannot start executing a function when the emulator is already started without \
calling stop() or reset() first"
);
let fun = self
.functions
.get(&callee)
.cloned()
.ok_or(EmulationError::UndefinedFunction(callee))?;
self.status = Status::Started;
match fun {
Stub::Asm(ref function) => match self.invoke_function(function.clone(), args) {
done @ Ok(_) => {
self.status = Status::Stopped;
done
}
Err(err @ EmulationError::BreakpointHit(_)) => {
self.status = Status::Suspended;
Err(err)
}
Err(err) => {
self.status = Status::Faulted(err.clone());
Err(err)
}
},
Stub::Native(function) => {
let mut function = function.borrow_mut();
function(self, args)?;
Ok(self.stack.clone())
}
}
}
/// Invoke a function defined in MASM IR, placing the given arguments on the
/// operand stack in FIFO order, and suspending immediately if any breakpoints
/// would have been triggered by the invocation.
#[inline]
fn invoke_function(
&mut self,
function: Arc<Function>,
args: &[Felt],
) -> Result<OperandStack<Felt>, EmulationError> {
// Place the arguments on the operand stack
//assert_eq!(args.len(), function.arity());
for arg in args.iter().copied().rev() {
self.stack.push(arg);
}
// Schedule `function`
let name = function.name;
let fp = self.locals[&name];
let state = Activation::new(function, fp);
self.callstack.push(state);
match self
.breakpoints
.handle_event(EmulatorEvent::EnterFunction(name), self.current_ip())
{
Some(bp) => Err(EmulationError::BreakpointHit(bp)),
None => {
self.run()?;
Ok(self.stack.clone())
}
}
}
/// Run the emulator by invoking `callee` with `args` placed on the
/// operand stack in FIFO order.
///
/// If a fatal error occurs during emulation, `Err` is returned,
/// e.g. if `callee` has not been loaded.
///
/// When `callee` returns, it's result will be returned wrapped in `Ok`.
/// For functions with no return value, this will be `Ok(None)`, or all
/// others it will be `Ok(Some(value))`.
pub fn enter(
&mut self,
callee: FunctionIdent,
args: &[Felt],
) -> Result<EmulatorEvent, EmulationError> {
assert_matches!(
self.status,
Status::Loaded,
"cannot start executing a function when the emulator is already started without \
calling stop() or reset() first"
);
let fun = self
.functions
.get(&callee)
.cloned()
.ok_or(EmulationError::UndefinedFunction(callee))?;
self.status = Status::Started;
match fun {
Stub::Asm(ref function) => self.enter_function(function.clone(), args),
Stub::Native(function) => {
let mut function = function.borrow_mut();
function(self, args)?;
Ok(EmulatorEvent::ExitFunction(callee))
}
}
}
/// Stage a MASM IR function for execution by the emulator, placing the given arguments on the
/// operand stack in FIFO order, then immediately suspending execution until the next
/// resumption.
#[inline]
fn enter_function(
&mut self,
function: Arc<Function>,
args: &[Felt],
) -> Result<EmulatorEvent, EmulationError> {
// Place the arguments on the operand stack
//assert_eq!(args.len(), function.arity());
for arg in args.iter().copied().rev() {
self.stack.push(arg);
}
// Schedule `function`
let name = function.name;
let fp = self.locals[&name];
let state = Activation::new(function, fp);
self.callstack.push(state);
self.status = Status::Suspended;
Ok(EmulatorEvent::Suspended)
}
/// Resume execution when the emulator suspended due to a breakpoint
#[inline]
pub fn resume(&mut self) -> Result<EmulatorEvent, EmulationError> {
assert_matches!(
self.status,
Status::Suspended,
"cannot resume the emulator from any state other than suspended"
);
self.run()
}
}
/// Pops the top element off the advice stack
macro_rules! adv_pop {
($emu:ident) => {
$emu.advice_stack.pop().expect("advice stack is empty")
};
($emu:ident, $msg:literal) => {
$emu.advice_stack.pop().expect($msg)
};
($emu:ident, $msg:literal, $($arg:expr),+) => {
match $emu.advice_stack.pop() {
Some(value) => value,
None => panic!($msg, $($arg),*),
}
}
}
/// Pops the top word off the advice stack
macro_rules! adv_popw {
($emu:ident) => {
$emu.advice_stack.popw().expect("advice stack does not contain a full word")
};
($emu:ident, $msg:literal) => {
$emu.advice_stack.popw().expect($msg)
};
($emu:ident, $msg:literal, $($arg:expr),+) => {{
match $emu.advice_stack.popw() {
Some(value) => value,
None => panic!($msg, $($arg),*),
}
}}
}
/// Pops the top element off the stack
macro_rules! pop {
($emu:ident) => {
$emu.stack.pop().expect("operand stack is empty")
};
($emu:ident, $msg:literal) => {
$emu.stack.pop().expect($msg)
};
($emu:ident, $msg:literal, $($arg:expr),+) => {
match $emu.stack.pop() {
Some(value) => value,
None => panic!($msg, $($arg),*),
}
}
}
/// Peeks the top element of the stack
macro_rules! peek {
($emu:ident) => {
$emu.stack.peek().expect("operand stack is empty")
};
($emu:ident, $msg:literal) => {
$emu.stack.peek().expect($msg)
};
($emu:ident, $msg:literal, $($arg:expr),+) => {
match $emu.stack.peek() {
Some(value) => value,
None => panic!($msg, $($arg),*),
}
}
}
/// Pops the top word off the stack
macro_rules! popw {
($emu:ident) => {
$emu.stack.popw().expect("operand stack does not contain a full word")
};
($emu:ident, $msg:literal) => {
$emu.stack.popw().expect($msg)
};
($emu:ident, $msg:literal, $($arg:expr),+) => {{
match $emu.stack.popw() {
Some(value) => value,
None => panic!($msg, $($arg),*),
}
}}
}
/// Pops the top two elements off the stack, returning them in order of appearance
macro_rules! pop2 {
($emu:ident) => {{
let b = pop!($emu);
let a = pop!($emu);
(b, a)
}};
}
/// Pops a u32 value from the top of the stack, and asserts if it is out of range
macro_rules! pop_u32 {
($emu:ident) => {{
let value = pop!($emu).as_int();
assert!(value < 2u64.pow(32), "assertion failed: {value} is not a valid u32, value is out of range");
value as u32
}};
($emu:ident, $format:literal $(, $args:expr)*) => {{
let value = pop!($emu).as_int();
assert!(value < 2u64.pow(32), $format, value, $($args),*);
value as u32
}}
}
/// Peeks a u32 value from the top of the stack, and asserts if it is out of range
#[allow(unused)]
macro_rules! peek_u32 {
($emu:ident) => {{
let value = peek!($emu).as_int();
assert!(value < 2u64.pow(32), "assertion failed: {value} is not a valid u32, value is out of range");
value as u32
}};
($emu:ident, $format:literal $(, $args:expr)*) => {{
let value = peek!($emu).as_int();
assert!(value < 2u64.pow(32), $format, value, $($args),*);
value as u32
}}
}
/// Pops a pointer value from the top of the stack, and asserts if it is not a valid boolean
macro_rules! pop_addr {
($emu:ident) => {{
let addr = pop_u32!($emu, "expected valid 32-bit address, got {}") as usize;
assert!(
addr < $emu.memory.len(),
"out of bounds memory access, addr: {}, available memory: {}",
addr,
$emu.memory.len()
);
addr
}};
}
/// Pops a boolean value from the top of the stack, and asserts if it is not a valid boolean
macro_rules! pop_bool {
($emu:ident) => {{
let value = pop!($emu).as_int();
assert!(
value < 2,
"assertion failed: {value} is not a valid boolean, value must be either 1 or 0"
);
value == 1
}};
}
/// Applies a binary operator that produces a result of the same input type:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop {
($emu:ident, $op:ident) => {{
use core::ops::*;
let b = pop!($emu);
let a = pop!($emu);
$emu.stack.push(a.$op(b));
}};
($emu:ident, $op:ident, $imm:expr) => {{
use core::ops::*;
let a = pop!($emu);
$emu.stack.push(a.$op($imm));
}};
}
/// Applies a binary operator to two u32 values, either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop32 {
($emu:ident, $op:ident) => {{
#[allow(unused)]
use core::ops::*;
let b = pop_u32!($emu);
let a = pop_u32!($emu);
$emu.stack.push_u32(a.$op(b));
}};
($emu:ident, $op:ident, $imm:expr) => {{
#[allow(unused)]
use core::ops::*;
let a = pop_u32!($emu);
$emu.stack.push_u32(a.$op($imm));
}};
}
/// Applies a checked binary operator to two u32 values, either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop_unchecked_u32 {
($emu:ident, $op:ident) => {{
#[allow(unused)]
use core::ops::*;
let b = pop!($emu);
let a = pop!($emu);
$emu.stack.push(Felt::new(a.as_int().$op(b.as_int())));
}};
($emu:ident, $op:ident, $imm:expr) => {{
#[allow(unused)]
use core::ops::*;
let a = pop!($emu);
$emu.stack.push(Felt::new(a.as_int().$op($imm)));
}};
}
/// Applies an overflowing binary operator to two u32 values, either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop_overflowing_u32 {
($emu:ident, $op:ident) => {{
paste::paste! {
binop_overflowing_u32_impl!($emu, [<overflowing_ $op>]);
}
}};
($emu:ident, $op:ident, $imm:expr) => {{
paste::paste! {
binop_overflowing_u32_impl!($emu, [<overflowing_ $op>], $imm);
}
}};
}
#[doc(hidden)]
macro_rules! binop_overflowing_u32_impl {
($emu:ident, $op:ident) => {{
#[allow(unused)]
use core::ops::*;
let b = pop_u32!($emu);
let a = pop_u32!($emu);
let (result, overflowed) = a.$op(b);
$emu.stack.push_u32(result);
$emu.stack.push_u8(overflowed as u8);
}};
($emu:ident, $op:ident, $imm:expr) => {{
#[allow(unused)]
use core::ops::*;
let a = pop_u32!($emu);
let (result, overflowed) = a.$op($imm);
$emu.stack.push_u32(result);
$emu.stack.push_u8(overflowed as u8);
}};
}
/// Applies a wrapping binary operator to two u32 values, either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! binop_wrapping_u32 {
($emu:ident, $op:ident) => {{
paste::paste! {
binop_wrapping_u32_impl!($emu, [<wrapping_ $op>]);
}
}};
($emu:ident, $op:ident, $imm:expr) => {{
paste::paste! {
binop_wrapping_u32_impl!($emu, [<wrapping_ $op>], $imm);
}
}};
}
#[doc(hidden)]
macro_rules! binop_wrapping_u32_impl {
($emu:ident, $op:ident) => {{
#[allow(unused)]
use core::ops::*;
let b = pop_u32!($emu);
let a = pop_u32!($emu);
$emu.stack.push_u32(a.$op(b));
}};
($emu:ident, $op:ident, $imm:expr) => {{
#[allow(unused)]
use core::ops::*;
let a = pop_u32!($emu);
$emu.stack.push_u32(a.$op($imm));
}};
}
/// Applies a binary comparison operator, to either:
///
/// 1. The top two elements of the stack
/// 2. The top element of the stack and an immediate.
macro_rules! comparison {
($emu:ident, $op:ident) => {{
let b = pop!($emu).as_int();
let a = pop!($emu).as_int();
let result: bool = a.$op(&b);
$emu.stack.push_u8(result as u8);
}};
($emu:ident, $op:ident, $imm:expr) => {{
let a = pop!($emu).as_int();
let result: bool = a.$op(&$imm);
$emu.stack.push_u8(result as u8);
}};
}
impl Emulator {
/// Step the emulator forward one cycle, returning the type of event produced
/// during that cycle, or an error.
pub fn step(&mut self) -> Result<EmulatorEvent, EmulationError> {
match self
.breakpoints
.handle_event(EmulatorEvent::CycleStart(self.clk), self.current_ip())
{
Some(bp) => {
self.status = Status::Suspended;
Ok(EmulatorEvent::Breakpoint(bp))
}
None => match self.run_once() {
Ok(EmulatorEvent::Stopped) => {
self.status = Status::Stopped;
Ok(EmulatorEvent::Stopped)
}
suspended @ Ok(_) => {
self.status = Status::Suspended;
suspended
}
Err(err) => {
self.status = Status::Faulted(err.clone());
Err(err)
}
},
}
}
/// Step the emulator forward one step, but stepping past any nested blocks or function calls,
/// returning the type of event produced during that cycle, or an error.
pub fn step_over(&mut self) -> Result<EmulatorEvent, EmulationError> {
match self.step_over.take() {
None => self.step(),
Some(ip) => {
self.breakpoints.set(Breakpoint::At(ip));
match self.run() {
Ok(EmulatorEvent::Stopped) => {
self.status = Status::Stopped;
Ok(EmulatorEvent::Stopped)
}
Ok(EmulatorEvent::Breakpoint(bp)) | Err(EmulationError::BreakpointHit(bp)) => {
self.status = Status::Suspended;
if self.current_ip().map(|ix| ix.ip) == Some(ip) {
return Ok(EmulatorEvent::Suspended);
}
Ok(EmulatorEvent::Breakpoint(bp))
}
Ok(event) => panic!(
"unexpected event produced by emulator loop when stepping over: {event:?}"
),
Err(err) => {
self.status = Status::Faulted(err.clone());
Err(err)
}
}
}
}
}
/// Step the emulator forward until control returns from the current function.
pub fn step_out(&mut self) -> Result<EmulatorEvent, EmulationError> {
let current_function = self.current_function();
self.breakpoints.break_on_return(true);
match self.run() {
Ok(EmulatorEvent::Stopped) => {
self.status = Status::Stopped;
Ok(EmulatorEvent::Stopped)
}
Ok(EmulatorEvent::Breakpoint(bp)) | Err(EmulationError::BreakpointHit(bp)) => {
self.status = Status::Suspended;
if self.current_function() == current_function {
return Ok(EmulatorEvent::Suspended);
}
Ok(EmulatorEvent::Breakpoint(bp))
}
Ok(event) => {
panic!("unexpected event produced by emulator loop when stepping over: {event:?}")
}
Err(err) => {
self.status = Status::Faulted(err.clone());
Err(err)
}
}
}
/// Run the emulator until all calls are completed, the cycle budget is exhausted,
/// or a breakpoint is hit.
///
/// It is expected that the caller has set up the operand stack with the correct
/// number of arguments. If not, undefined behavior (from the perspective of the
/// MASM program) will result.
#[inline(never)]
fn run(&mut self) -> Result<EmulatorEvent, EmulationError> {
// This is the core interpreter loop for MASM IR, it runs until one of the
// following occurs:
//
// * We run out of code to execute, i.e. the function is returning normally
// * Execution was explicitly aborted from within the function
// * Execution traps due to a MASM invariant being violated, indicating the
// code is malformed.
// * Execution traps due to a runtime system error, e.g. out of memory
// * Execution traps due to exceeding the predefined execution budget
// * Execution breaks due to a breakpoint
let mut event = self.step()?;
loop {
match event {
// We should suspend when encountering these events
event @ EmulatorEvent::Breakpoint(_) => break Ok(event),
event @ EmulatorEvent::Stopped => break Ok(event),
ev => {
// We must handle catching certain breakpoints when using this event loop
match self.breakpoints.handle_event(ev, self.current_ip()) {
Some(bp) => break Ok(EmulatorEvent::Breakpoint(bp)),
None => match ev {
// There was no code remaining in the current function, effectively
// returning from it. Since no instructions were dispatched, we don't
// count the cycle, and resume immediately at the continuation point
// in the caller
EmulatorEvent::ExitFunction(_) => {
if self.callstack.is_empty() {
break Ok(EmulatorEvent::Stopped);
}
event = self.run_once()?;
continue;
}
_ => {
event = self.step()?;
}
},
}
}
}
}
}
#[inline(never)]
fn run_once(&mut self) -> Result<EmulatorEvent, EmulationError> {
const U32_P: u64 = 2u64.pow(32);
// If there are no more activation records, we're done
if self.callstack.is_empty() {
return Ok(EmulatorEvent::Stopped);
}
// Terminate execution early if we reach a predetermined number of cycles
self.clk += 1;
if self.clk > self.clk_limit {
return Err(EmulationError::CycleBudgetExceeded);
}
let mut state = self.callstack.pop().unwrap();
let current_function = state.function().name;
// Reset the next instruction to break at when stepping over instructions
self.step_over = None;
// If we have breakpoints set that require it, we may need to
// break execution before executing the instruction that is pending
if self.breakpoints.break_on_return || self.breakpoints.has_break_on_reached() {
match state.peek() {
Some(Instruction { ip, .. })
if self.breakpoints.should_break_at(ip.block, ip.index) =>
{
self.callstack.push(state);
return Ok(EmulatorEvent::Breakpoint(BreakpointEvent::Reached(ip)));
}
None if self.breakpoints.break_on_return => {
self.callstack.push(state);
self.breakpoints.break_on_return(false);
return Ok(EmulatorEvent::Breakpoint(BreakpointEvent::StepOut));
}
_ => (),
}
}
// Advance the instruction pointer, returning the instruction
// that it previously pointed to, along with what, if any,
// control flow effect occurred to reach it
let ix_with_op = state.next();
if let Some(ix_with_op) = ix_with_op {
if self.print_trace {
eprintln!("mem: {:?}", self.memory);
eprintln!("stk: {}", self.stack.debug());
eprintln!("op>: {:?}", ix_with_op.op);
}
match ix_with_op.op {
Op::Padw => {
self.stack.padw();
}
Op::Push(v) => {
self.stack.push(v);
}
Op::Push2([a, b]) => {
self.stack.push(a);
self.stack.push(b);
}
Op::Pushw(word) => {
self.stack.pushw(word);
}
Op::PushU8(i) => {
self.stack.push_u8(i);
}
Op::PushU16(i) => {
self.stack.push_u16(i);
}
Op::PushU32(i) => {
self.stack.push_u32(i);
}
Op::Drop => {
self.stack.drop();
}
Op::Dropw => {
self.stack.dropw();
}
Op::Dup(pos) => {
self.stack.dup(pos as usize);
}
Op::Dupw(pos) => {
self.stack.dupw(pos as usize);
}
Op::Swap(pos) => {
self.stack.swap(pos as usize);
}
Op::Swapw(pos) => {
self.stack.swapw(pos as usize);
}
Op::Swapdw => {
self.stack.swapdw();
}
Op::Movup(pos) => {
self.stack.movup(pos as usize);
}
Op::Movupw(pos) => {
self.stack.movupw(pos as usize);
}
Op::Movdn(pos) => {
self.stack.movdn(pos as usize);
}
Op::Movdnw(pos) => {
self.stack.movdnw(pos as usize);
}
Op::Cswap => {
let cond = pop_bool!(self);
if cond {
self.stack.swap(1);
}
}
Op::Cswapw => {
let cond = pop_bool!(self);
if cond {
self.stack.swapw(1);
}
}
Op::Cdrop => {
let cond = pop_bool!(self);
let (b, a) = pop2!(self);
if cond {
self.stack.push(b);
} else {
self.stack.push(a);
}
}
Op::Cdropw => {
let cond = pop_bool!(self);
let b = popw!(self);
let a = popw!(self);
if cond {
self.stack.pushw(b);
} else {
self.stack.pushw(a);
}
}
Op::AdvPush(n) => {
assert!(
n > 0 && n <= 16,
"invalid adv_push operand: must be a value in the range 1..=16, got {n}"
);
for _ in 0..n {
let value = adv_pop!(self);
self.stack.push(value);
}
}
Op::AdvLoadw => {
let word = adv_popw!(self);
self.stack.dropw();
self.stack.pushw(word);
}
Op::AdvPipe => {
// We're overwriting the first two words, C and B, so drop them
self.stack.dropw();
self.stack.dropw();
// The third word, A, is saved, but unused
let a = popw!(self);
// The memory address to write to is the first element of the fourth word
let addr = pop_addr!(self);
// We update the original address += 2, and restore A
self.stack.push_u32(addr as u32 + 2);
self.stack.pushw(a);
// We then move words D and E from the advice stack to the operand stack,
// while also writing those words to memory starting at `addr`
let d = adv_popw!(self);
self.stack.pushw(d);
self.memory[addr] = d;
let e = adv_popw!(self);
self.stack.pushw(e);
self.memory[addr + 1] = e;
// Lastly, since we performed a memory write here, suspend like we do for other
// memory-modifying ops
self.callstack.push(state);
return Ok(EmulatorEvent::MemoryWrite {
addr: addr as u32,
size: 16,
});
}
Op::AdvInjectPushU64Div => {
const HI_MASK: u64 = u64::MAX << 32;
const LO_MASK: u64 = u32::MAX as u64;
let b_hi = pop_u32!(self) as u64;
let b_lo = pop_u32!(self) as u64;
let b = (b_hi << 32) | b_lo;
assert!(b > 0, "assertion failed: division by zero");
let a_hi = pop_u32!(self) as u64;
let a_lo = pop_u32!(self) as u64;
let a = (a_hi << 32) | a_lo;
let q = a / b;
let q_hi = (q & HI_MASK) >> 32;
let q_lo = q & LO_MASK;
let r = a % b;
let r_hi = (r & HI_MASK) >> 32;
let r_lo = r & LO_MASK;
self.advice_stack.push_u32(r_hi as u32);
self.advice_stack.push_u32(r_lo as u32);
self.advice_stack.push_u32(q_hi as u32);
self.advice_stack.push_u32(q_lo as u32);
self.stack.push_u32(a_lo as u32);
self.stack.push_u32(a_hi as u32);
self.stack.push_u32(b_lo as u32);
self.stack.push_u32(b_hi as u32);
}
Op::AdvInjectInsertMem
| Op::AdvInjectInsertHperm
| Op::AdvInjectInsertHdword
| Op::AdvInjectInsertHdwordImm(_)
| Op::AdvInjectPushMTreeNode
| Op::AdvInjectPushMapVal
| Op::AdvInjectPushMapValImm(_)
| Op::AdvInjectPushMapValN
| Op::AdvInjectPushMapValNImm(_) => unimplemented!(),
Op::Assert => {
let cond = pop_bool!(self);
assert!(cond, "assertion failed: expected true, got false");
}
Op::Assertz => {
let cond = pop_bool!(self);
assert!(!cond, "assertion failed: expected false, got true");
}
Op::AssertEq => {
let (b, a) = pop2!(self);
assert_eq!(a, b, "equality assertion failed");
}
Op::AssertEqw => {
let b = popw!(self);
let a = popw!(self);
assert_eq!(a, b, "equality assertion failed");
}
Op::LocAddr(id) => {
let addr = state.fp() + id.as_usize() as u32;
debug_assert!(addr < self.memory.len() as u32);
self.stack.push_u32(addr * 16);
}
Op::LocStore(id) => {
let addr = (state.fp() + id.as_usize() as u32) as usize;
debug_assert!(addr < self.memory.len());
let value = pop!(self);
self.memory[addr][0] = value;
return Ok(EmulatorEvent::MemoryWrite {
addr: addr as u32,
size: 4,
});
}
Op::LocStorew(id) => {
let addr = (state.fp() + id.as_usize() as u32) as usize;
assert!(addr < self.memory.len() - 4, "out of bounds memory access");
let word =
self.stack.peekw().expect("operand stack does not contain a full word");
self.memory[addr] = word;
return Ok(EmulatorEvent::MemoryWrite {
addr: addr as u32,
size: 16,
});
}
Op::LocLoad(id) => {
let addr = (state.fp() + id.as_usize() as u32) as usize;
debug_assert!(addr < self.memory.len());
self.stack.push(self.memory[addr][0]);
}
Op::LocLoadw(id) => {
let addr = (state.fp() + id.as_usize() as u32) as usize;
debug_assert!(addr < self.memory.len());
self.stack.dropw();
self.stack.pushw(self.memory[addr]);
}
Op::MemLoad => {
let addr = pop_addr!(self);
self.stack.push(self.memory[addr][0]);
}
Op::MemLoadImm(addr) => {
let addr = addr as usize;
assert!(addr < self.memory.len(), "out of bounds memory access");
self.stack.push(self.memory[addr][0]);
}
Op::MemLoadw => {
let addr = pop_addr!(self);
self.stack.dropw();
let mut word = self.memory[addr];
word.reverse();
self.stack.pushw(word);
}
Op::MemLoadwImm(addr) => {
let addr = addr as usize;
assert!(addr < self.memory.len() - 4, "out of bounds memory access");
self.stack.dropw();
let mut word = self.memory[addr];
word.reverse();
self.stack.pushw(word);
}
Op::MemStore => {
let addr = pop_addr!(self);
let value = pop!(self);
self.memory[addr][0] = value;
self.callstack.push(state);
return Ok(EmulatorEvent::MemoryWrite {
addr: addr as u32,
size: 4,
});
}
Op::MemStoreImm(addr) => {
let addr = addr as usize;
assert!(addr < self.memory.len(), "out of bounds memory access");
let value = self.stack.pop().expect("operand stack is empty");
self.memory[addr][0] = value;
self.callstack.push(state);
return Ok(EmulatorEvent::MemoryWrite {
addr: addr as u32,
size: 4,
});
}
Op::MemStorew => {
let addr = pop_addr!(self);
let mut word =
self.stack.peekw().expect("operand stack does not contain a full word");
word.reverse();
self.memory[addr] = word;
self.callstack.push(state);
return Ok(EmulatorEvent::MemoryWrite {
addr: addr as u32,
size: 16,
});
}
Op::MemStorewImm(addr) => {
let addr = addr as usize;
assert!(addr < self.memory.len() - 4, "out of bounds memory access");
let mut word =
self.stack.peekw().expect("operand stack does not contain a full word");
word.reverse();
self.memory[addr] = word;
self.callstack.push(state);
return Ok(EmulatorEvent::MemoryWrite {
addr: addr as u32,
size: 16,
});
}
Op::If(then_blk, else_blk) => {
self.step_over = Some(state.ip());
let cond = pop_bool!(self);
let dest = if cond {
state.enter_block(then_blk);
then_blk
} else {
state.enter_block(else_blk);
else_blk
};
self.callstack.push(state);
return Ok(EmulatorEvent::Jump(dest));
}
Op::While(body_blk) => {
self.step_over = Some(state.ip());
let cond = pop_bool!(self);
if cond {
state.enter_while_loop(body_blk);
self.callstack.push(state);
return Ok(EmulatorEvent::EnterLoop(body_blk));
}
}
Op::Repeat(n, body_blk) => {
self.step_over = Some(state.ip());
state.repeat_block(body_blk, n);
self.callstack.push(state);
return Ok(EmulatorEvent::EnterLoop(body_blk));
}
Op::Exec(callee) => {
let fun = self
.functions
.get(&callee)
.cloned()
.ok_or(EmulationError::UndefinedFunction(callee))?;
self.step_over = Some(state.ip());
match fun {
Stub::Asm(ref function) => {
let fp = self.locals[&function.name];
let callee_state = Activation::new(function.clone(), fp);
// Suspend caller and scheduled callee next
self.callstack.push(state);
self.callstack.push(callee_state);
return Ok(EmulatorEvent::EnterFunction(function.name));
}
Stub::Native(_function) => unimplemented!(),
}
}
Op::Call(_callee) | Op::Syscall(_callee) => unimplemented!(),
Op::Add => binop!(self, add),
Op::AddImm(imm) => binop!(self, add, imm),
Op::Sub => binop!(self, sub),
Op::SubImm(imm) => binop!(self, sub, imm),
Op::Mul => binop!(self, mul),
Op::MulImm(imm) => binop!(self, mul, imm),
Op::Div => binop!(self, div),
Op::DivImm(imm) => binop!(self, div, imm),
Op::Neg => {
let a = self.stack.pop().expect("operand stack is empty");
self.stack.push(-a);
}
Op::Inv => {
let a = self.stack.pop().expect("operand stack is empty");
self.stack.push(a.inv());
}
Op::Incr => binop!(self, add, Felt::ONE),
Op::Ilog2 => {
let a = peek!(self).as_int();
assert!(a > 0, "invalid ilog2 argument: expected {a} to be > 0");
self.advice_stack.push_u32(a.ilog2());
}
Op::Pow2 => {
let a = pop!(self).as_int();
assert!(
a < 64,
"invalid power of two: expected {a} to be a value less than 64"
);
let two = Felt::new(2);
self.stack.push(two.exp(a));
}
Op::Exp => {
let (b, a) = pop2!(self);
let b = b.as_int();
assert!(
b < 64,
"invalid power of two: expected {b} to be a value less than 64"
);
self.stack.push(a.exp(b));
}
Op::ExpImm(pow) | Op::ExpBitLength(pow) => {
let pow = pow as u64;
let a = pop!(self);
assert!(
pow < 64,
"invalid power of two: expected {pow} to be a value less than 64"
);
self.stack.push(a.exp(pow));
}
Op::Not => {
let a = pop_bool!(self);
self.stack.push_u8(!a as u8);
}
Op::And => {
let b = pop_bool!(self);
let a = pop_bool!(self);
self.stack.push_u8((b & a) as u8);
}
Op::AndImm(b) => {
let a = pop_bool!(self);
self.stack.push_u8((a & b) as u8);
}
Op::Or => {
let b = pop_bool!(self);
let a = pop_bool!(self);
self.stack.push_u8((b | a) as u8);
}
Op::OrImm(b) => {
let a = pop_bool!(self);
self.stack.push_u8((a | b) as u8);
}
Op::Xor => {
let b = pop_bool!(self);
let a = pop_bool!(self);
self.stack.push_u8((b ^ a) as u8);
}
Op::XorImm(b) => {
let a = pop_bool!(self);
self.stack.push_u8((a ^ b) as u8);
}
Op::Eq => comparison!(self, eq),
Op::EqImm(imm) => comparison!(self, eq, imm.as_int()),
Op::Neq => comparison!(self, ne),
Op::NeqImm(imm) => comparison!(self, ne, imm.as_int()),
Op::Gt => comparison!(self, gt),
Op::GtImm(imm) => comparison!(self, gt, imm.as_int()),
Op::Gte => comparison!(self, ge),
Op::GteImm(imm) => comparison!(self, ge, imm.as_int()),
Op::Lt => comparison!(self, lt),
Op::LtImm(imm) => comparison!(self, lt, imm.as_int()),
Op::Lte => comparison!(self, le),
Op::LteImm(imm) => comparison!(self, le, imm.as_int()),
Op::IsOdd => {
let a = pop!(self).as_int();
self.stack.push_u8((a % 2 == 0) as u8);
}
Op::Eqw => {
let b = popw!(self);
let a = popw!(self);
self.stack.push_u8((a == b) as u8);
}
Op::Clk => {
self.stack.push(Felt::new(self.clk as u64));
}
Op::Sdepth => {
self.stack.push(Felt::new(self.stack.len() as u64));
}
Op::U32Test => {
let top = self.stack.peek().expect("operand stack is empty").as_int();
self.stack.push_u8((top < U32_P) as u8);
}
Op::U32Testw => {
let word = self.stack.peekw().expect("operand stack is empty");
let is_true = word.iter().all(|elem| elem.as_int() < U32_P);
self.stack.push_u8(is_true as u8);
}
Op::U32Assert => {
let top = self.stack.peek().expect("operand stack is empty").as_int();
assert!(top < U32_P, "assertion failed: {top} is larger than 2^32");
}
Op::U32Assert2 => {
let a = self.stack.peek().expect("operand stack is empty").as_int();
let b = self.stack.peek().expect("operand stack is empty").as_int();
assert!(a < U32_P, "assertion failed: {a} is larger than 2^32");
assert!(b < U32_P, "assertion failed: {b} is larger than 2^32");
}
Op::U32Assertw => {
let word = self.stack.peekw().expect("operand stack is empty");
for elem in word.into_iter() {
assert!(
elem.as_int() < U32_P,
"assertion failed: {elem} is larger than 2^32"
);
}
}
Op::U32Cast => {
let a = pop!(self).as_int();
self.stack.push(Felt::new(a % U32_P));
}
Op::U32Split => {
let a = pop!(self).as_int();
let hi = a / U32_P;
let lo = a % U32_P;
self.stack.push(Felt::new(lo));
self.stack.push(Felt::new(hi));
}
Op::U32OverflowingAdd => binop_overflowing_u32!(self, add),
Op::U32OverflowingAddImm(imm) => binop_overflowing_u32!(self, add, imm),
Op::U32WrappingAdd => binop_wrapping_u32!(self, add),
Op::U32WrappingAddImm(imm) => binop_wrapping_u32!(self, add, imm),
Op::U32OverflowingAdd3 => todo!(),
Op::U32WrappingAdd3 => todo!(),
Op::U32OverflowingSub => binop_overflowing_u32!(self, sub),
Op::U32OverflowingSubImm(imm) => binop_overflowing_u32!(self, sub, imm),
Op::U32WrappingSub => binop_wrapping_u32!(self, sub),
Op::U32WrappingSubImm(imm) => binop_wrapping_u32!(self, sub, imm),
Op::U32OverflowingMul => binop_overflowing_u32!(self, mul),
Op::U32OverflowingMulImm(imm) => binop_overflowing_u32!(self, mul, imm),
Op::U32WrappingMul => binop_wrapping_u32!(self, mul),
Op::U32WrappingMulImm(imm) => binop_wrapping_u32!(self, mul, imm),
Op::U32OverflowingMadd => {
let b = pop_u32!(self) as u64;
let a = pop_u32!(self) as u64;
let c = pop_u32!(self) as u64;
let result = a * b + c;
let d = result % 2u64.pow(32);
let e = result / 2u64.pow(32);
self.stack.push(Felt::new(d));
self.stack.push(Felt::new(e));
}
Op::U32WrappingMadd => {
let b = pop_u32!(self) as u64;
let a = pop_u32!(self) as u64;
let c = pop_u32!(self) as u64;
let d = (a * b + c) % 2u64.pow(32);
self.stack.push(Felt::new(d));
}
Op::U32Div => binop_unchecked_u32!(self, div),
Op::U32DivImm(imm) => binop_unchecked_u32!(self, div, imm as u64),
Op::U32Mod => {
let b = pop!(self).as_int();
let a = pop!(self).as_int();
self.stack.push(Felt::new(a % b));
}
Op::U32ModImm(imm) => {
let a = pop!(self).as_int();
self.stack.push(Felt::new(a % imm as u64));
}
Op::U32DivMod => {
let b = pop!(self).as_int();
let a = pop!(self).as_int();
self.stack.push(Felt::new(a / b));
self.stack.push(Felt::new(a % b));
}
Op::U32DivModImm(b) => {
let b = b as u64;
let a = pop!(self).as_int();
self.stack.push(Felt::new(a / b));
self.stack.push(Felt::new(a % b));
}
Op::U32And => binop32!(self, bitand),
Op::U32Or => binop32!(self, bitor),
Op::U32Xor => binop32!(self, bitxor),
Op::U32Not => {
let a = pop_u32!(self);
self.stack.push_u32(!a);
}
Op::U32Shl => binop_wrapping_u32!(self, shl),
Op::U32ShlImm(imm) => binop_wrapping_u32!(self, shl, imm),
Op::U32Shr => binop_wrapping_u32!(self, shr),
Op::U32ShrImm(imm) => binop_wrapping_u32!(self, shr, imm),
Op::U32Rotl => {
let b = pop_u32!(self);
let a = pop_u32!(self);
self.stack.push_u32(a.rotate_left(b));
}
Op::U32RotlImm(imm) => {
let a = pop_u32!(self);
self.stack.push_u32(a.rotate_left(imm));
}
Op::U32Rotr => {
let b = pop_u32!(self);
let a = pop_u32!(self);
self.stack.push_u32(a.rotate_right(b));
}
Op::U32RotrImm(imm) => {
let a = pop_u32!(self);
self.stack.push_u32(a.rotate_right(imm));
}
Op::U32Popcnt => {
let a = pop_u32!(self);
self.stack.push_u32(a.count_ones());
}
Op::U32Clz => {
let a = pop_u32!(self);
self.stack.push_u32(a.leading_zeros());
}
Op::U32Clo => {
let a = pop_u32!(self);
self.stack.push_u32(a.leading_ones());
}
Op::U32Ctz => {
let a = pop_u32!(self);
self.stack.push_u32(a.trailing_zeros());
}
Op::U32Cto => {
let a = pop_u32!(self);
self.stack.push_u32(a.trailing_ones());
}
Op::U32Gt => comparison!(self, gt),
Op::U32Gte => comparison!(self, ge),
Op::U32Lt => comparison!(self, lt),
Op::U32Lte => comparison!(self, le),
Op::U32Min => {
let b = pop!(self).as_int();
let a = pop!(self).as_int();
self.stack.push(Felt::new(cmp::min(a, b)));
}
Op::U32Max => {
let b = pop!(self).as_int();
let a = pop!(self).as_int();
self.stack.push(Felt::new(cmp::max(a, b)));
}
Op::Breakpoint => {
self.callstack.push(state);
return Ok(EmulatorEvent::Breakpoint(BreakpointEvent::Step));
}
Op::DebugStack => {
dbg!(self.stack.debug());
}
Op::DebugStackN(n) => {
dbg!(self.stack.debug().take(n as usize));
}
Op::DebugMemory
| Op::DebugMemoryAt(_)
| Op::DebugMemoryRange(..)
| Op::DebugFrame
| Op::DebugFrameAt(_)
| Op::DebugFrameRange(..) => (),
Op::Emit(_) | Op::Trace(_) => (),
op => unimplemented!("missing opcode implementation for {op:?}"),
}
match ix_with_op.effect {
ControlEffect::Repeat(_) | ControlEffect::Loopback => {
self.callstack.push(state);
return Ok(EmulatorEvent::EnterLoop(ix_with_op.ip.block));
}
ControlEffect::Enter => {
self.callstack.push(state);
return Ok(EmulatorEvent::Jump(ix_with_op.ip.block));
}
ControlEffect::Exit => {
self.callstack.push(state);
return Ok(EmulatorEvent::Jump(ix_with_op.ip.block));
}
ControlEffect::None => (),
}
// Suspend the current activation record
self.callstack.push(state);
Ok(EmulatorEvent::Suspended)
} else {
// No more code left in the current function
Ok(EmulatorEvent::ExitFunction(current_function))
}
}
}