1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
use std::collections::BTreeSet;
use midenc_hir::FunctionIdent;
use rustc_hash::{FxHashMap, FxHashSet};
use super::{Addr, BreakpointEvent, EmulatorEvent, Instruction, InstructionPointer};
use crate::BlockId;
/// A breakpoint can be used to force the emulator to suspend
/// execution when a specific event or condition is reached.
///
/// When hit, control is handed back to the owner of the emulator
/// so that they can inspect the state, potentially make changes,
/// and then resume execution if desired.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum Breakpoint {
/// Break after each cycle
All,
/// Break when the cycle count reaches N
Cycle(usize),
/// Step until control reaches the given instruction pointer value
At(InstructionPointer),
/// Break at loop instructions
///
/// The break will start on the looping instruction itself, and when
/// execution resumes, will break either at the next nested loop, or
/// if a complete iteration is reached, one of two places depending on
/// the type of looping instruction we're in:
///
/// * `while.true` will break at the `while.true` on each iteration
/// * `repeat.n` will break at the top of the loop body on each iteration
Loops,
/// Break when the given function is called
Called(FunctionIdent),
/// Break when the given watchpoint is hit
///
/// This is also referred to as a watchpoint
Watch(WatchpointId),
}
/// The unique identifier associated with an active [Watchpoint]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct WatchpointId(usize);
impl WatchpointId {
#[inline]
const fn index(self) -> usize {
self.0
}
}
/// A [Watchpoint] specifies a region of memory that will trigger
/// a breakpoint in the emulator when it is written to.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Watchpoint {
pub addr: u32,
pub size: u32,
mode: WatchMode,
}
impl Watchpoint {
pub const fn new(addr: u32, size: u32, mode: WatchMode) -> Self {
Self { addr, size, mode }
}
pub fn mode(&self) -> WatchMode {
self.mode
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum WatchMode {
/// Treat the watchpoint like a breakpoint
Break,
/// Raise a warning when the watchpoint is hit, but do not break
Warn,
/// Publish an event when this watchpoint is hit, but do not break
Event,
/// The watchpoint is inactive
Disabled,
}
/// The [BreakpointManager] is responsible for tracking what break-
/// and watchpoints have been created, activated/deactivated, and for
/// informing the emulator when a breakpoint was hit.
#[derive(Debug, Default)]
pub struct BreakpointManager {
/// True if we should break every cycle
break_every_cycle: bool,
/// True if we should break when returning from the current function
pub break_on_return: bool,
/// True if we should break at every loop instruction
break_loops: bool,
/// The set of cycle counts at which a breakpoint will be triggered
break_at_cycles: BTreeSet<usize>,
/// The set of functions we should break on when called
break_on_calls: FxHashSet<FunctionIdent>,
/// The set of address ranges that will trigger a watchpoint
break_on_writes: Vec<Watchpoint>,
/// A mapping of blocks to instruction indices which will trigger a breakpoint
break_on_reached: FxHashMap<BlockId, FxHashSet<usize>>,
}
impl BreakpointManager {
/// Returns all watchpoints that are currently managed by this [BreakpointManager]
pub fn watchpoints(&self) -> impl Iterator<Item = Watchpoint> + '_ {
self.break_on_writes.iter().copied()
}
#[allow(unused)]
pub fn has_watchpoints(&self) -> bool {
!self.break_on_writes.is_empty()
}
pub fn has_break_on_reached(&self) -> bool {
!self.break_on_reached.is_empty()
}
/// Returns all breakpoints that are currently managed by this [BreakpointManager]
pub fn breakpoints(&self) -> impl Iterator<Item = Breakpoint> {
BreakpointIter::new(self)
}
/// Create a [Watchpoint] that monitors the specified memory region, using `mode`
/// to determine how writes to that region should be handled by the watchpoint
pub fn watch(&mut self, addr: u32, size: u32, mode: WatchMode) -> WatchpointId {
let id = WatchpointId(self.break_on_writes.len());
self.break_on_writes.push(Watchpoint { addr, size, mode });
id
}
/// Set the watch mode for a [Watchpoint] using the identifier returned by [watch]
pub fn watch_mode(&mut self, id: WatchpointId, mode: WatchMode) {
self.break_on_writes[id.index()].mode = mode;
}
/// Disables a [Watchpoint] using the identifier returned by [watch]
pub fn unwatch(&mut self, id: WatchpointId) {
self.break_on_writes[id.index()].mode = WatchMode::Disabled;
}
/// Clears all watchpoints
pub fn unwatch_all(&mut self) {
self.break_on_writes.clear();
}
/// Set the given breakpoint
pub fn set(&mut self, bp: Breakpoint) {
use std::collections::hash_map::Entry;
match bp {
Breakpoint::All => {
self.break_every_cycle = true;
}
Breakpoint::Cycle(cycle) => {
self.break_at_cycles.insert(cycle);
}
Breakpoint::At(ip) => match self.break_on_reached.entry(ip.block) {
Entry::Vacant(entry) => {
entry.insert(FxHashSet::from_iter([ip.index]));
}
Entry::Occupied(mut entry) => {
entry.get_mut().insert(ip.index);
}
},
Breakpoint::Loops => {
self.break_loops = true;
}
Breakpoint::Called(id) => {
self.break_on_calls.insert(id);
}
Breakpoint::Watch(id) => {
self.break_on_writes[id.index()].mode = WatchMode::Break;
}
}
}
/// Unset/disable the given breakpoint
pub fn unset(&mut self, bp: Breakpoint) {
match bp {
Breakpoint::All => {
self.break_every_cycle = false;
}
Breakpoint::Cycle(cycle) => {
self.break_at_cycles.remove(&cycle);
}
Breakpoint::At(ip) => {
if let Some(indices) = self.break_on_reached.get_mut(&ip.block) {
indices.remove(&ip.index);
}
}
Breakpoint::Loops => {
self.break_loops = false;
}
Breakpoint::Called(id) => {
self.break_on_calls.remove(&id);
}
Breakpoint::Watch(id) => {
self.unwatch(id);
}
}
}
/// Clear all breakpoints, but leaves watchpoints in place
pub fn unset_all(&mut self) {
self.break_every_cycle = false;
self.break_at_cycles.clear();
self.break_loops = false;
self.break_on_calls.clear();
self.break_on_reached.clear();
}
/// Clear all breakpoints and watchpoints
pub fn clear(&mut self) {
self.unset_all();
self.unwatch_all();
}
/// Force the emulator to break the next time we return from a function
pub fn break_on_return(&mut self, value: bool) {
self.break_on_return = value;
}
/// Respond to emulator events, and return true if at least one breakpoint was hit
pub fn handle_event(
&mut self,
event: EmulatorEvent,
ip: Option<Instruction>,
) -> Option<BreakpointEvent> {
use core::cmp::Ordering;
match event {
EmulatorEvent::EnterFunction(id) => {
if self.break_on_calls.contains(&id) {
Some(BreakpointEvent::Called(id))
} else {
None
}
}
EmulatorEvent::EnterLoop(block) if self.break_loops => {
Some(BreakpointEvent::Loop(block))
}
EmulatorEvent::EnterLoop(block) => {
if self.should_break_at(block, 0) {
Some(BreakpointEvent::Reached(InstructionPointer::new(block)))
} else {
None
}
}
EmulatorEvent::CycleStart(cycle) => {
let mut cycle_hit = false;
self.break_at_cycles.retain(|break_at_cycle| match cycle.cmp(break_at_cycle) {
Ordering::Equal => {
cycle_hit = true;
false
}
Ordering::Greater => false,
Ordering::Less => true,
});
if cycle_hit {
Some(BreakpointEvent::ReachedCycle(cycle))
} else if self.break_every_cycle {
Some(BreakpointEvent::Step)
} else {
None
}
}
EmulatorEvent::ExitFunction(_) if self.break_on_return => {
Some(BreakpointEvent::StepOut)
}
EmulatorEvent::ExitFunction(_)
| EmulatorEvent::ExitLoop(_)
| EmulatorEvent::Jump(_) => match ip {
Some(Instruction { ip, .. }) => {
let break_at_current_ip = self.should_break_at(ip.block, ip.index);
if break_at_current_ip {
Some(BreakpointEvent::Reached(ip))
} else if self.break_every_cycle {
Some(BreakpointEvent::Step)
} else {
None
}
}
None => {
if self.break_every_cycle {
Some(BreakpointEvent::Step)
} else {
None
}
}
},
EmulatorEvent::MemoryWrite { addr, size } => {
self.matches_watchpoint(addr, size).copied().map(BreakpointEvent::Watch)
}
EmulatorEvent::Stopped | EmulatorEvent::Suspended => None,
EmulatorEvent::Breakpoint(bp) => Some(bp),
}
}
pub fn should_break_at(&self, block: BlockId, index: usize) -> bool {
self.break_on_reached
.get(&block)
.map(|indices| indices.contains(&index))
.unwrap_or(false)
}
#[inline]
#[allow(unused)]
pub fn should_break_on_write(&self, addr: Addr, size: u32) -> bool {
self.matches_watchpoint(addr, size).is_some()
}
fn matches_watchpoint(&self, addr: Addr, size: u32) -> Option<&Watchpoint> {
let end_addr = addr + size;
self.break_on_writes.iter().find(|wp| {
let wp_end = wp.addr + wp.size;
if let WatchMode::Break = wp.mode {
addr <= wp_end && end_addr >= wp.addr
} else {
false
}
})
}
}
struct BreakpointIter {
bps: Vec<Breakpoint>,
}
impl BreakpointIter {
fn new(bpm: &BreakpointManager) -> Self {
let mut iter = BreakpointIter {
bps: Vec::with_capacity(4),
};
iter.bps.extend(bpm.break_on_writes.iter().enumerate().filter_map(|(i, wp)| {
if wp.mode == WatchMode::Break {
Some(Breakpoint::Watch(WatchpointId(i)))
} else {
None
}
}));
iter.bps.extend(bpm.break_at_cycles.iter().copied().map(Breakpoint::Cycle));
for (block, indices) in bpm.break_on_reached.iter() {
if indices.is_empty() {
continue;
}
let block = *block;
for index in indices.iter().copied() {
iter.bps.push(Breakpoint::At(InstructionPointer { block, index }))
}
}
if bpm.break_loops {
iter.bps.push(Breakpoint::Loops);
}
if bpm.break_every_cycle {
iter.bps.push(Breakpoint::All);
}
iter
}
}
impl Iterator for BreakpointIter {
type Item = Breakpoint;
fn next(&mut self) -> Option<Self::Item> {
self.bps.pop()
}
}
impl core::iter::FusedIterator for BreakpointIter {}