miden_tx/executor/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
use alloc::{collections::BTreeSet, sync::Arc, vec::Vec};
use miden_lib::transaction::TransactionKernel;
use miden_objects::{
accounts::{AccountCode, AccountId},
assembly::Library,
notes::NoteId,
transaction::{ExecutedTransaction, TransactionArgs, TransactionInputs},
vm::StackOutputs,
MAX_TX_EXECUTION_CYCLES, MIN_TX_EXECUTION_CYCLES, ZERO,
};
use vm_processor::{ExecutionOptions, RecAdviceProvider};
use winter_maybe_async::{maybe_async, maybe_await};
use super::{TransactionExecutorError, TransactionHost};
use crate::auth::TransactionAuthenticator;
mod data_store;
pub use data_store::DataStore;
mod mast_store;
pub use mast_store::TransactionMastStore;
// TRANSACTION EXECUTOR
// ================================================================================================
/// The transaction executor is responsible for executing Miden rollup transactions.
///
/// Transaction execution consists of the following steps:
/// - Fetch the data required to execute a transaction from the [DataStore].
/// - Load the code associated with the transaction into the [TransactionMastStore].
/// - Execute the transaction program and create an [ExecutedTransaction].
///
/// The transaction executor uses dynamic dispatch with trait objects for the [DataStore] and
/// [TransactionAuthenticator], allowing it to be used with different backend implementations.
pub struct TransactionExecutor {
data_store: Arc<dyn DataStore>,
mast_store: Arc<TransactionMastStore>,
authenticator: Option<Arc<dyn TransactionAuthenticator>>,
/// Holds the code of all accounts loaded into this transaction executor via the
/// [Self::load_account_code()] method.
account_codes: BTreeSet<AccountCode>,
exec_options: ExecutionOptions,
}
impl TransactionExecutor {
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Creates a new [TransactionExecutor] instance with the specified [DataStore] and
/// [TransactionAuthenticator].
pub fn new(
data_store: Arc<dyn DataStore>,
authenticator: Option<Arc<dyn TransactionAuthenticator>>,
) -> Self {
const _: () = assert!(MIN_TX_EXECUTION_CYCLES <= MAX_TX_EXECUTION_CYCLES);
Self {
data_store,
mast_store: Arc::new(TransactionMastStore::new()),
authenticator,
exec_options: ExecutionOptions::new(
Some(MAX_TX_EXECUTION_CYCLES),
MIN_TX_EXECUTION_CYCLES,
false,
false,
)
.expect("Must not fail while max cycles is more than min trace length"),
account_codes: BTreeSet::new(),
}
}
/// Puts the [TransactionExecutor] into debug mode.
///
/// When transaction executor is in debug mode, all transaction-related code (note scripts,
/// account code) will be compiled and executed in debug mode. This will ensure that all debug
/// instructions present in the original source code are executed.
pub fn with_debug_mode(mut self, in_debug_mode: bool) -> Self {
self.exec_options = ExecutionOptions::new(
Some(self.exec_options.max_cycles()),
self.exec_options.expected_cycles(),
self.exec_options.enable_tracing(),
in_debug_mode,
)
.expect("failed to clone execution options");
self
}
/// Enables tracing for the created instance of [TransactionExecutor].
///
/// When tracing is enabled, the executor will receive tracing events as various stages of the
/// transaction kernel complete. This enables collecting basic stats about how long different
/// stages of transaction execution take.
pub fn with_tracing(mut self) -> Self {
self.exec_options = self.exec_options.with_tracing();
self
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Loads the provided account code into the internal MAST forest store and adds the commitment
/// of the provided code to the commitments set.
pub fn load_account_code(&mut self, code: &AccountCode) {
// load the code mast forest to the mast store
self.mast_store.load_account_code(code);
// store the commitment of the foreign account code in the set
self.account_codes.insert(code.clone());
}
/// Loads the provided library code into the internal MAST forest store.
///
/// TODO: this is a work-around to support accounts which were complied with user-defined
/// libraries. Once Miden Assembler supports library vendoring, this should go away.
pub fn load_library(&mut self, library: &Library) {
self.mast_store.insert(library.mast_forest().clone());
}
// TRANSACTION EXECUTION
// --------------------------------------------------------------------------------------------
/// Prepares and executes a transaction specified by the provided arguments and returns an
/// [ExecutedTransaction].
///
/// The method first fetches the data required to execute the transaction from the [DataStore]
/// and compile the transaction into an executable program. Then, it executes the transaction
/// program and creates an [ExecutedTransaction] object.
///
/// # Errors:
/// Returns an error if:
/// - If required data can not be fetched from the [DataStore].
#[maybe_async]
pub fn execute_transaction(
&self,
account_id: AccountId,
block_ref: u32,
notes: &[NoteId],
tx_args: TransactionArgs,
) -> Result<ExecutedTransaction, TransactionExecutorError> {
let tx_inputs =
maybe_await!(self.data_store.get_transaction_inputs(account_id, block_ref, notes))
.map_err(TransactionExecutorError::FetchTransactionInputsFailed)?;
let (stack_inputs, advice_inputs) =
TransactionKernel::prepare_inputs(&tx_inputs, &tx_args, None);
let advice_recorder: RecAdviceProvider = advice_inputs.into();
// load note script MAST into the MAST store
self.mast_store.load_transaction_code(&tx_inputs, &tx_args);
let mut host = TransactionHost::new(
tx_inputs.account().into(),
advice_recorder,
self.mast_store.clone(),
self.authenticator.clone(),
self.account_codes.iter().map(|code| code.commitment()).collect(),
)
.map_err(TransactionExecutorError::TransactionHostCreationFailed)?;
// execute the transaction kernel
let result = vm_processor::execute(
&TransactionKernel::main(),
stack_inputs,
&mut host,
self.exec_options,
)
.map_err(TransactionExecutorError::ExecuteTransactionProgramFailed)?;
// Attempt to retrieve used account codes based on the advice map
let account_codes = self
.account_codes
.iter()
.filter_map(|code| {
tx_args
.advice_inputs()
.mapped_values(&code.commitment())
.and(Some(code.clone()))
})
.collect();
build_executed_transaction(
tx_args,
tx_inputs,
result.stack_outputs().clone(),
host,
account_codes,
)
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Creates a new [ExecutedTransaction] from the provided data.
fn build_executed_transaction(
tx_args: TransactionArgs,
tx_inputs: TransactionInputs,
stack_outputs: StackOutputs,
host: TransactionHost<RecAdviceProvider>,
account_codes: Vec<AccountCode>,
) -> Result<ExecutedTransaction, TransactionExecutorError> {
let (advice_recorder, account_delta, output_notes, generated_signatures, tx_progress) =
host.into_parts();
let (mut advice_witness, _, map, _store) = advice_recorder.finalize();
let tx_outputs =
TransactionKernel::from_transaction_parts(&stack_outputs, &map.into(), output_notes)
.map_err(TransactionExecutorError::InvalidTransactionOutput)?;
let final_account = &tx_outputs.account;
let initial_account = tx_inputs.account();
if initial_account.id() != final_account.id() {
return Err(TransactionExecutorError::InconsistentAccountId {
input_id: initial_account.id(),
output_id: final_account.id(),
});
}
// make sure nonce delta was computed correctly
let nonce_delta = final_account.nonce() - initial_account.nonce();
if nonce_delta == ZERO {
if account_delta.nonce().is_some() {
return Err(TransactionExecutorError::InconsistentAccountNonceDelta {
expected: None,
actual: account_delta.nonce(),
});
}
} else if final_account.nonce() != account_delta.nonce().unwrap_or_default() {
return Err(TransactionExecutorError::InconsistentAccountNonceDelta {
expected: Some(final_account.nonce()),
actual: account_delta.nonce(),
});
}
// introduce generated signatures into the witness inputs
advice_witness.extend_map(generated_signatures);
Ok(ExecutedTransaction::new(
tx_inputs,
tx_outputs,
account_codes,
account_delta,
tx_args,
advice_witness,
tx_progress.into(),
))
}