1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
use alloc::{rc::Rc, vec::Vec};
use miden_lib::transaction::{ToTransactionKernelInputs, TransactionKernel};
use miden_objects::{
assembly::ProgramAst,
transaction::{TransactionArgs, TransactionInputs, TransactionScript},
vm::{Program, StackOutputs},
Felt, Word, ZERO,
};
use vm_processor::ExecutionOptions;
use winter_maybe_async::{maybe_async, maybe_await};
use super::{
AccountCode, AccountId, Digest, ExecutedTransaction, NoteId, NoteScript, PreparedTransaction,
RecAdviceProvider, ScriptTarget, TransactionCompiler, TransactionExecutorError,
TransactionHost,
};
use crate::auth::TransactionAuthenticator;
mod data_store;
pub use data_store::DataStore;
// TRANSACTION EXECUTOR
// ================================================================================================
/// The transaction executor is responsible for executing Miden rollup transactions.
///
/// Transaction execution consists of the following steps:
/// - Fetch the data required to execute a transaction from the [DataStore].
/// - Compile the transaction into a program using the [TransactionCompiler](crate::TransactionCompiler).
/// - Execute the transaction program and create an [ExecutedTransaction].
///
/// The transaction executor is generic over the [DataStore] which allows it to be used with
/// different data backend implementations.
///
/// The [TransactionExecutor::execute_transaction()] method is the main entry point for the
/// executor and produces an [ExecutedTransaction] for the transaction. The executed transaction
/// can then be used to by the prover to generate a proof transaction execution.
pub struct TransactionExecutor<D, A> {
data_store: D,
authenticator: Option<Rc<A>>,
compiler: TransactionCompiler,
exec_options: ExecutionOptions,
}
impl<D: DataStore, A: TransactionAuthenticator> TransactionExecutor<D, A> {
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Creates a new [TransactionExecutor] instance with the specified [DataStore] and [TransactionAuthenticator].
pub fn new(data_store: D, authenticator: Option<Rc<A>>) -> Self {
Self {
data_store,
authenticator,
compiler: TransactionCompiler::new(),
exec_options: ExecutionOptions::default(),
}
}
/// Puts the [TransactionExecutor] into debug mode.
///
/// When transaction executor is in debug mode, all transaction-related code (note scripts,
/// account code) will be compiled and executed in debug mode. This will ensure that all debug
/// instructions present in the original source code are executed.
pub fn with_debug_mode(mut self, in_debug_mode: bool) -> Self {
self.compiler = self.compiler.with_debug_mode(in_debug_mode);
if in_debug_mode && !self.exec_options.enable_debugging() {
self.exec_options = self.exec_options.with_debugging();
} else if !in_debug_mode && self.exec_options.enable_debugging() {
// since we can't set the debug mode directly, we re-create execution options using
// the same values as current execution options (except for debug mode which defaults
// to false)
self.exec_options = ExecutionOptions::new(
Some(self.exec_options.max_cycles()),
self.exec_options.expected_cycles(),
self.exec_options.enable_tracing(),
)
.expect("failed to clone execution options");
}
self
}
/// Enables tracing for the created instance of [TransactionExecutor].
///
/// When tracing is enabled, the executor will receive tracing events as various stages of the
/// transaction kernel complete. This enables collecting basic stats about how long different
/// stages of transaction execution take.
pub fn with_tracing(mut self) -> Self {
self.exec_options = self.exec_options.with_tracing();
self
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Fetches the account code from the [DataStore], compiles it, and loads the compiled code
/// into the internal cache.
///
/// This also returns the [AccountCode] object built from the loaded account code.
///
/// # Errors:
/// Returns an error if:
/// - If the account code cannot be fetched from the [DataStore].
/// - If the account code fails to be loaded into the compiler.
#[maybe_async]
pub fn load_account(
&mut self,
account_id: AccountId,
) -> Result<AccountCode, TransactionExecutorError> {
let account_code = maybe_await!(self.data_store.get_account_code(account_id))
.map_err(TransactionExecutorError::FetchAccountCodeFailed)?;
self.compiler
.load_account(account_id, account_code)
.map_err(TransactionExecutorError::LoadAccountFailed)
}
/// Loads the provided account interface (vector of procedure digests) into the compiler.
///
/// Returns the old interface for the specified account ID if it previously existed.
pub fn load_account_interface(
&mut self,
account_id: AccountId,
procedures: Vec<Digest>,
) -> Option<Vec<Digest>> {
self.compiler.load_account_interface(account_id, procedures)
}
// COMPILERS
// --------------------------------------------------------------------------------------------
/// Compiles the provided program into a [NoteScript] and checks (to the extent possible) if
/// the specified note program could be executed against all accounts with the specified
/// interfaces.
pub fn compile_note_script(
&self,
note_script_ast: ProgramAst,
target_account_procs: Vec<ScriptTarget>,
) -> Result<NoteScript, TransactionExecutorError> {
self.compiler
.compile_note_script(note_script_ast, target_account_procs)
.map_err(TransactionExecutorError::CompileNoteScriptFailed)
}
/// Compiles the provided transaction script source and inputs into a [TransactionScript] and
/// checks (to the extent possible) that the transaction script can be executed against all
/// accounts with the specified interfaces.
pub fn compile_tx_script<T>(
&self,
tx_script_ast: ProgramAst,
inputs: T,
target_account_procs: Vec<ScriptTarget>,
) -> Result<TransactionScript, TransactionExecutorError>
where
T: IntoIterator<Item = (Word, Vec<Felt>)>,
{
self.compiler
.compile_tx_script(tx_script_ast, inputs, target_account_procs)
.map_err(TransactionExecutorError::CompileTransactionScriptFailed)
}
// TRANSACTION EXECUTION
// --------------------------------------------------------------------------------------------
/// Prepares and executes a transaction specified by the provided arguments and returns an
/// [ExecutedTransaction].
///
/// The method first fetches the data required to execute the transaction from the [DataStore]
/// and compile the transaction into an executable program. Then, it executes the transaction
/// program and creates an [ExecutedTransaction] object.
///
/// # Errors:
/// Returns an error if:
/// - If required data can not be fetched from the [DataStore].
/// - If the transaction program can not be compiled.
/// - If the transaction program can not be executed.
#[maybe_async]
pub fn execute_transaction(
&self,
account_id: AccountId,
block_ref: u32,
notes: &[NoteId],
tx_args: TransactionArgs,
) -> Result<ExecutedTransaction, TransactionExecutorError> {
let transaction =
maybe_await!(self.prepare_transaction(account_id, block_ref, notes, tx_args))?;
let (stack_inputs, advice_inputs) = transaction.get_kernel_inputs();
let advice_recorder: RecAdviceProvider = advice_inputs.into();
let mut host = TransactionHost::new(
transaction.account().into(),
advice_recorder,
self.authenticator.clone(),
);
let result = vm_processor::execute(
transaction.program(),
stack_inputs,
&mut host,
self.exec_options,
)
.map_err(TransactionExecutorError::ExecuteTransactionProgramFailed)?;
let (tx_program, tx_inputs, tx_args) = transaction.into_parts();
build_executed_transaction(
tx_program,
tx_args,
tx_inputs,
result.stack_outputs().clone(),
host,
)
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
/// Fetches the data required to execute the transaction from the [DataStore], compiles the
/// transaction into an executable program using the [TransactionCompiler], and returns a
/// [PreparedTransaction].
///
/// # Errors:
/// Returns an error if:
/// - If required data can not be fetched from the [DataStore].
/// - If the transaction can not be compiled.
#[maybe_async]
pub fn prepare_transaction(
&self,
account_id: AccountId,
block_ref: u32,
notes: &[NoteId],
tx_args: TransactionArgs,
) -> Result<PreparedTransaction, TransactionExecutorError> {
let tx_inputs =
maybe_await!(self.data_store.get_transaction_inputs(account_id, block_ref, notes))
.map_err(TransactionExecutorError::FetchTransactionInputsFailed)?;
let tx_program = self
.compiler
.compile_transaction(
account_id,
tx_inputs.input_notes(),
tx_args.tx_script().map(|x| x.code()),
)
.map_err(TransactionExecutorError::CompileTransactionFailed)?;
Ok(PreparedTransaction::new(tx_program, tx_inputs, tx_args))
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Creates a new [ExecutedTransaction] from the provided data.
fn build_executed_transaction<A: TransactionAuthenticator>(
program: Program,
tx_args: TransactionArgs,
tx_inputs: TransactionInputs,
stack_outputs: StackOutputs,
host: TransactionHost<RecAdviceProvider, A>,
) -> Result<ExecutedTransaction, TransactionExecutorError> {
let (advice_recorder, account_delta, output_notes, generated_signatures) = host.into_parts();
let (mut advice_witness, _, map, _store) = advice_recorder.finalize();
let tx_outputs =
TransactionKernel::from_transaction_parts(&stack_outputs, &map.into(), output_notes)
.map_err(TransactionExecutorError::InvalidTransactionOutput)?;
let final_account = &tx_outputs.account;
let initial_account = tx_inputs.account();
if initial_account.id() != final_account.id() {
return Err(TransactionExecutorError::InconsistentAccountId {
input_id: initial_account.id(),
output_id: final_account.id(),
});
}
// make sure nonce delta was computed correctly
let nonce_delta = final_account.nonce() - initial_account.nonce();
if nonce_delta == ZERO {
if account_delta.nonce().is_some() {
return Err(TransactionExecutorError::InconsistentAccountNonceDelta {
expected: None,
actual: account_delta.nonce(),
});
}
} else if final_account.nonce() != account_delta.nonce().unwrap_or_default() {
return Err(TransactionExecutorError::InconsistentAccountNonceDelta {
expected: Some(final_account.nonce()),
actual: account_delta.nonce(),
});
}
// introduce generated signature into the witness inputs
advice_witness.extend_map(generated_signatures);
Ok(ExecutedTransaction::new(
program,
tx_inputs,
tx_outputs,
account_delta,
tx_args,
advice_witness,
))
}