miden_processor/fast/
mod.rs

1use alloc::{boxed::Box, sync::Arc, vec::Vec};
2use core::cmp::min;
3
4use memory::Memory;
5use miden_air::{Felt, RowIndex};
6use miden_core::{
7    Decorator, EMPTY_WORD, Program, StackOutputs, WORD_SIZE, Word, ZERO,
8    mast::{MastForest, MastNode, MastNodeExt, MastNodeId},
9    stack::MIN_STACK_DEPTH,
10    utils::range,
11};
12
13use crate::{
14    AdviceInputs, AdviceProvider, AsyncHost, ContextId, ErrorContext, ExecutionError, FMP_MIN,
15    ProcessState,
16    chiplets::Ace,
17    continuation_stack::{Continuation, ContinuationStack},
18    fast::{execution_tracer::ExecutionTracer, trace_state::TraceFragmentContext},
19};
20
21mod execution_tracer;
22mod memory;
23mod operation;
24pub mod trace_state;
25mod tracer;
26pub use tracer::{NoopTracer, Tracer};
27
28mod basic_block;
29mod call_and_dyn;
30mod external;
31mod join;
32mod r#loop;
33mod split;
34
35#[cfg(test)]
36mod tests;
37
38/// The size of the stack buffer.
39///
40/// Note: This value is much larger than it needs to be for the majority of programs. However, some
41/// existing programs need it (e.g. `std::math::secp256k1::group::gen_mul`), so we're forced to push
42/// it up. At this high a value, we're starting to see some performance degradation on benchmarks.
43/// For example, the blake3 benchmark went from 285 MHz to 250 MHz (~10% degradation). Perhaps a
44/// better solution would be to make this value much smaller (~1000), and then fallback to a `Vec`
45/// if the stack overflows.
46const STACK_BUFFER_SIZE: usize = 6850;
47
48/// The initial position of the top of the stack in the stack buffer.
49///
50/// We place this value close to 0 because if a program hits the limit, it's much more likely to hit
51/// the upper bound than the lower bound, since hitting the lower bound only occurs when you drop
52/// 0's that were generated automatically to keep the stack depth at 16. In practice, if this
53/// occurs, it is most likely a bug.
54const INITIAL_STACK_TOP_IDX: usize = 250;
55
56/// The number of rows per core trace fragment.
57pub const NUM_ROWS_PER_CORE_FRAGMENT: usize = 1024;
58
59/// A fast processor which doesn't generate any trace.
60///
61/// This processor is designed to be as fast as possible. Hence, it only keeps track of the current
62/// state of the processor (i.e. the stack, current clock cycle, current memory context, and free
63/// memory pointer).
64///
65/// # Stack Management
66/// A few key points about how the stack was designed for maximum performance:
67///
68/// - The stack has a fixed buffer size defined by `STACK_BUFFER_SIZE`.
69///     - This was observed to increase performance by at least 2x compared to using a `Vec` with
70///       `push()` & `pop()`.
71///     - We track the stack top and bottom using indices `stack_top_idx` and `stack_bot_idx`,
72///       respectively.
73/// - Since we are using a fixed-size buffer, we need to ensure that stack buffer accesses are not
74///   out of bounds. Naively, we could check for this on every access. However, every operation
75///   alters the stack depth by a predetermined amount, allowing us to precisely determine the
76///   minimum number of operations required to reach a stack buffer boundary, whether at the top or
77///   bottom.
78///     - For example, if the stack top is 10 elements away from the top boundary, and the stack
79///       bottom is 15 elements away from the bottom boundary, then we can safely execute 10
80///       operations that modify the stack depth with no bounds check.
81/// - When switching contexts (e.g., during a call or syscall), all elements past the first 16 are
82///   stored in an `ExecutionContextInfo` struct, and the stack is truncated to 16 elements. This
83///   will be restored when returning from the call or syscall.
84///
85/// # Clock Cycle Management
86/// - The clock cycle (`clk`) is managed in the same way as in `Process`. That is, it is incremented
87///   by 1 for every row that `Process` adds to the main trace.
88///     - It is important to do so because the clock cycle is used to determine the context ID for
89///       new execution contexts when using `call` or `dyncall`.
90#[derive(Debug)]
91pub struct FastProcessor {
92    /// The stack is stored in reverse order, so that the last element is at the top of the stack.
93    pub(super) stack: Box<[Felt; STACK_BUFFER_SIZE]>,
94    /// The index of the top of the stack.
95    stack_top_idx: usize,
96    /// The index of the bottom of the stack.
97    stack_bot_idx: usize,
98
99    /// The current clock cycle.
100    pub(super) clk: RowIndex,
101
102    /// The current context ID.
103    pub(super) ctx: ContextId,
104
105    /// The free memory pointer.
106    pub(super) fmp: Felt,
107
108    /// Whether we are currently in a syscall.
109    in_syscall: bool,
110
111    /// The hash of the function that called into the current context, or `[ZERO, ZERO, ZERO,
112    /// ZERO]` if we are in the first context (i.e. when `call_stack` is empty).
113    pub(super) caller_hash: Word,
114
115    /// The advice provider to be used during execution.
116    pub(super) advice: AdviceProvider,
117
118    /// A map from (context_id, word_address) to the word stored starting at that memory location.
119    pub(super) memory: Memory,
120
121    /// A map storing metadata per call to the ACE chiplet.
122    pub(super) ace: Ace,
123
124    /// The call stack is used when starting a new execution context (from a `call`, `syscall` or
125    /// `dyncall`) to keep track of the information needed to return to the previous context upon
126    /// return. It is a stack since calls can be nested.
127    call_stack: Vec<ExecutionContextInfo>,
128
129    /// Whether to enable debug statements and tracing.
130    in_debug_mode: bool,
131}
132
133impl FastProcessor {
134    // CONSTRUCTORS
135    // ----------------------------------------------------------------------------------------------
136
137    /// Creates a new `FastProcessor` instance with the given stack inputs.
138    ///
139    /// # Panics
140    /// - Panics if the length of `stack_inputs` is greater than `MIN_STACK_DEPTH`.
141    pub fn new(stack_inputs: &[Felt]) -> Self {
142        Self::initialize(stack_inputs, AdviceInputs::default(), false)
143    }
144
145    /// Creates a new `FastProcessor` instance with the given stack and advice inputs.
146    ///
147    /// # Panics
148    /// - Panics if the length of `stack_inputs` is greater than `MIN_STACK_DEPTH`.
149    pub fn new_with_advice_inputs(stack_inputs: &[Felt], advice_inputs: AdviceInputs) -> Self {
150        Self::initialize(stack_inputs, advice_inputs, false)
151    }
152
153    /// Creates a new `FastProcessor` instance, set to debug mode, with the given stack
154    /// and advice inputs.
155    ///
156    /// # Panics
157    /// - Panics if the length of `stack_inputs` is greater than `MIN_STACK_DEPTH`.
158    pub fn new_debug(stack_inputs: &[Felt], advice_inputs: AdviceInputs) -> Self {
159        Self::initialize(stack_inputs, advice_inputs, true)
160    }
161
162    /// Generic constructor unifying the above public ones.
163    ///
164    /// The stack inputs are expected to be stored in reverse order. For example, if `stack_inputs =
165    /// [1,2,3]`, then the stack will be initialized as `[3,2,1,0,0,...]`, with `3` being on
166    /// top.
167    fn initialize(stack_inputs: &[Felt], advice_inputs: AdviceInputs, in_debug_mode: bool) -> Self {
168        assert!(stack_inputs.len() <= MIN_STACK_DEPTH);
169
170        let stack_top_idx = INITIAL_STACK_TOP_IDX;
171        let stack = {
172            // Note: we use `Vec::into_boxed_slice()` here, since `Box::new([T; N])` first allocates
173            // the array on the stack, and then moves it to the heap. This might cause a
174            // stack overflow on some systems.
175            let mut stack: Box<[Felt; STACK_BUFFER_SIZE]> =
176                vec![ZERO; STACK_BUFFER_SIZE].into_boxed_slice().try_into().unwrap();
177            let bottom_idx = stack_top_idx - stack_inputs.len();
178
179            stack[bottom_idx..stack_top_idx].copy_from_slice(stack_inputs);
180            stack
181        };
182
183        Self {
184            advice: advice_inputs.into(),
185            stack,
186            stack_top_idx,
187            stack_bot_idx: stack_top_idx - MIN_STACK_DEPTH,
188            clk: 0_u32.into(),
189            ctx: 0_u32.into(),
190            fmp: Felt::new(FMP_MIN),
191            in_syscall: false,
192            caller_hash: EMPTY_WORD,
193            memory: Memory::new(),
194            call_stack: Vec::new(),
195            ace: Ace::default(),
196            in_debug_mode,
197        }
198    }
199
200    // ACCESSORS
201    // -------------------------------------------------------------------------------------------
202
203    /// Returns the size of the stack.
204    #[inline(always)]
205    fn stack_size(&self) -> usize {
206        self.stack_top_idx - self.stack_bot_idx
207    }
208
209    /// Returns the stack, such that the top of the stack is at the last index of the returned
210    /// slice.
211    pub fn stack(&self) -> &[Felt] {
212        &self.stack[self.stack_bot_idx..self.stack_top_idx]
213    }
214
215    /// Returns the top 16 elements of the stack.
216    pub fn stack_top(&self) -> &[Felt] {
217        &self.stack[self.stack_top_idx - MIN_STACK_DEPTH..self.stack_top_idx]
218    }
219
220    /// Returns a mutable reference to the top 16 elements of the stack.
221    pub fn stack_top_mut(&mut self) -> &mut [Felt] {
222        &mut self.stack[self.stack_top_idx - MIN_STACK_DEPTH..self.stack_top_idx]
223    }
224
225    /// Returns the element on the stack at index `idx`.
226    #[inline(always)]
227    pub fn stack_get(&self, idx: usize) -> Felt {
228        self.stack[self.stack_top_idx - idx - 1]
229    }
230
231    /// Mutable variant of `stack_get()`.
232    #[inline(always)]
233    pub fn stack_get_mut(&mut self, idx: usize) -> &mut Felt {
234        &mut self.stack[self.stack_top_idx - idx - 1]
235    }
236
237    /// Returns the word on the stack starting at index `start_idx` in "stack order".
238    ///
239    /// That is, for `start_idx=0` the top element of the stack will be at the last position in the
240    /// word.
241    ///
242    /// For example, if the stack looks like this:
243    ///
244    /// top                                                       bottom
245    /// v                                                           v
246    /// a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p
247    ///
248    /// Then
249    /// - `stack_get_word(0)` returns `[d, c, b, a]`,
250    /// - `stack_get_word(1)` returns `[e, d, c ,b]`,
251    /// - etc.
252    #[inline(always)]
253    pub fn stack_get_word(&self, start_idx: usize) -> Word {
254        // Ensure we have enough elements to form a complete word
255        debug_assert!(
256            start_idx + WORD_SIZE <= self.stack_depth() as usize,
257            "Not enough elements on stack to read word starting at index {start_idx}"
258        );
259
260        let word_start_idx = self.stack_top_idx - start_idx - 4;
261        let result: [Felt; WORD_SIZE] =
262            self.stack[range(word_start_idx, WORD_SIZE)].try_into().unwrap();
263        result.into()
264    }
265
266    /// Returns the number of elements on the stack in the current context.
267    #[inline(always)]
268    pub fn stack_depth(&self) -> u32 {
269        (self.stack_top_idx - self.stack_bot_idx) as u32
270    }
271
272    // MUTATORS
273    // -------------------------------------------------------------------------------------------
274
275    /// Writes an element to the stack at the given index.
276    #[inline(always)]
277    pub fn stack_write(&mut self, idx: usize, element: Felt) {
278        self.stack[self.stack_top_idx - idx - 1] = element
279    }
280
281    /// Writes a word to the stack starting at the given index.
282    ///
283    /// The index is the index of the first element of the word, and the word is written in reverse
284    /// order.
285    #[inline(always)]
286    pub fn stack_write_word(&mut self, start_idx: usize, word: &Word) {
287        debug_assert!(start_idx < MIN_STACK_DEPTH);
288
289        let word_start_idx = self.stack_top_idx - start_idx - 4;
290        let source: [Felt; WORD_SIZE] = (*word).into();
291        self.stack[range(word_start_idx, WORD_SIZE)].copy_from_slice(&source)
292    }
293
294    /// Swaps the elements at the given indices on the stack.
295    #[inline(always)]
296    pub fn stack_swap(&mut self, idx1: usize, idx2: usize) {
297        let a = self.stack_get(idx1);
298        let b = self.stack_get(idx2);
299        self.stack_write(idx1, b);
300        self.stack_write(idx2, a);
301    }
302
303    // EXECUTE
304    // -------------------------------------------------------------------------------------------
305
306    /// Executes the given program and returns the stack outputs as well as the advice provider.
307    pub async fn execute(
308        self,
309        program: &Program,
310        host: &mut impl AsyncHost,
311    ) -> Result<ExecutionOutput, ExecutionError> {
312        self.execute_with_tracer(program, host, &mut NoopTracer).await
313    }
314
315    /// Executes the given program and returns the stack outputs, the advice provider, and
316    /// information for building the trace.
317    pub async fn execute_for_trace(
318        self,
319        program: &Program,
320        host: &mut impl AsyncHost,
321    ) -> Result<(ExecutionOutput, Vec<TraceFragmentContext>), ExecutionError> {
322        let mut tracer = ExecutionTracer::default();
323        let execution_output = self.execute_with_tracer(program, host, &mut tracer).await?;
324
325        Ok((execution_output, tracer.into_fragment_contexts()))
326    }
327
328    /// Executes the given program with the provided tracer and returns the stack outputs, and the
329    /// advice provider.
330    pub async fn execute_with_tracer(
331        mut self,
332        program: &Program,
333        host: &mut impl AsyncHost,
334        tracer: &mut impl Tracer,
335    ) -> Result<ExecutionOutput, ExecutionError> {
336        let stack_outputs = self.execute_impl(program, host, tracer).await?;
337
338        Ok(ExecutionOutput {
339            stack: stack_outputs,
340            advice: self.advice,
341            memory: self.memory,
342        })
343    }
344
345    /// Executes the given program with the provided tracer and returns the stack outputs.
346    ///
347    /// This function takes a `&mut self` (compared to `self` for the public execute functions) so
348    /// that the processor state may be accessed after execution. It is incorrect to execute a
349    /// second program using the same processor. This is mainly meant to be used in tests.
350    async fn execute_impl(
351        &mut self,
352        program: &Program,
353        host: &mut impl AsyncHost,
354        tracer: &mut impl Tracer,
355    ) -> Result<StackOutputs, ExecutionError> {
356        let mut continuation_stack = ContinuationStack::new(program);
357        let mut current_forest = program.mast_forest().clone();
358
359        // Merge the program's advice map into the advice provider
360        self.advice
361            .extend_map(current_forest.advice_map())
362            .map_err(|err| ExecutionError::advice_error(err, self.clk, &()))?;
363
364        while let Some(continuation) = continuation_stack.pop_continuation() {
365            match continuation {
366                Continuation::StartNode(node_id) => {
367                    let node = current_forest.get_node_by_id(node_id).unwrap();
368
369                    match node {
370                        MastNode::Block(basic_block_node) => {
371                            self.execute_basic_block_node(
372                                basic_block_node,
373                                node_id,
374                                &current_forest,
375                                host,
376                                &mut continuation_stack,
377                                &current_forest,
378                                tracer,
379                            )
380                            .await?
381                        },
382                        MastNode::Join(join_node) => self.start_join_node(
383                            join_node,
384                            node_id,
385                            &current_forest,
386                            &mut continuation_stack,
387                            host,
388                            tracer,
389                        )?,
390                        MastNode::Split(split_node) => self.start_split_node(
391                            split_node,
392                            node_id,
393                            &current_forest,
394                            &mut continuation_stack,
395                            host,
396                            tracer,
397                        )?,
398                        MastNode::Loop(loop_node) => self.start_loop_node(
399                            loop_node,
400                            node_id,
401                            &current_forest,
402                            &mut continuation_stack,
403                            host,
404                            tracer,
405                        )?,
406                        MastNode::Call(call_node) => self.start_call_node(
407                            call_node,
408                            node_id,
409                            program,
410                            &current_forest,
411                            &mut continuation_stack,
412                            host,
413                            tracer,
414                        )?,
415                        MastNode::Dyn(_) => {
416                            self.start_dyn_node(
417                                node_id,
418                                &mut current_forest,
419                                &mut continuation_stack,
420                                host,
421                                tracer,
422                            )
423                            .await?
424                        },
425                        MastNode::External(_external_node) => {
426                            self.execute_external_node(
427                                node_id,
428                                &mut current_forest,
429                                &mut continuation_stack,
430                                host,
431                                tracer,
432                            )
433                            .await?
434                        },
435                    }
436                },
437                Continuation::FinishJoin(node_id) => self.finish_join_node(
438                    node_id,
439                    &current_forest,
440                    &mut continuation_stack,
441                    host,
442                    tracer,
443                )?,
444                Continuation::FinishSplit(node_id) => self.finish_split_node(
445                    node_id,
446                    &current_forest,
447                    &mut continuation_stack,
448                    host,
449                    tracer,
450                )?,
451                Continuation::FinishLoop(node_id) => self.finish_loop_node(
452                    node_id,
453                    &current_forest,
454                    &mut continuation_stack,
455                    host,
456                    tracer,
457                )?,
458                Continuation::FinishCall(node_id) => self.finish_call_node(
459                    node_id,
460                    &current_forest,
461                    &mut continuation_stack,
462                    host,
463                    tracer,
464                )?,
465                Continuation::FinishDyn(node_id) => self.finish_dyn_node(
466                    node_id,
467                    &current_forest,
468                    &mut continuation_stack,
469                    host,
470                    tracer,
471                )?,
472                Continuation::EnterForest(previous_forest) => {
473                    // Restore the previous forest
474                    current_forest = previous_forest;
475                },
476            }
477        }
478
479        StackOutputs::new(
480            self.stack[self.stack_bot_idx..self.stack_top_idx]
481                .iter()
482                .rev()
483                .copied()
484                .collect(),
485        )
486        .map_err(|_| {
487            ExecutionError::OutputStackOverflow(
488                self.stack_top_idx - self.stack_bot_idx - MIN_STACK_DEPTH,
489            )
490        })
491    }
492
493    // DECORATOR EXECUTORS
494    // --------------------------------------------------------------------------------------------
495
496    /// Executes the decorators that should be executed before entering a node.
497    fn execute_before_enter_decorators(
498        &mut self,
499        node_id: MastNodeId,
500        current_forest: &MastForest,
501        host: &mut impl AsyncHost,
502    ) -> Result<(), ExecutionError> {
503        let node = current_forest
504            .get_node_by_id(node_id)
505            .expect("internal error: node id {node_id} not found in current forest");
506
507        for &decorator_id in node.before_enter() {
508            self.execute_decorator(&current_forest[decorator_id], host)?;
509        }
510
511        Ok(())
512    }
513
514    /// Executes the decorators that should be executed after exiting a node.
515    fn execute_after_exit_decorators(
516        &mut self,
517        node_id: MastNodeId,
518        current_forest: &MastForest,
519        host: &mut impl AsyncHost,
520    ) -> Result<(), ExecutionError> {
521        let node = current_forest
522            .get_node_by_id(node_id)
523            .expect("internal error: node id {node_id} not found in current forest");
524
525        for &decorator_id in node.after_exit() {
526            self.execute_decorator(&current_forest[decorator_id], host)?;
527        }
528
529        Ok(())
530    }
531
532    /// Executes the specified decorator
533    fn execute_decorator(
534        &mut self,
535        decorator: &Decorator,
536        host: &mut impl AsyncHost,
537    ) -> Result<(), ExecutionError> {
538        match decorator {
539            Decorator::Debug(options) => {
540                if self.in_debug_mode {
541                    let process = &mut self.state();
542                    host.on_debug(process, options)?;
543                }
544            },
545            Decorator::AsmOp(_assembly_op) => {
546                // do nothing
547            },
548            Decorator::Trace(id) => {
549                let process = &mut self.state();
550                host.on_trace(process, *id)?;
551            },
552        };
553        Ok(())
554    }
555
556    // HELPERS
557    // ----------------------------------------------------------------------------------------------
558
559    /// Increments the clock by 1.
560    #[inline(always)]
561    fn increment_clk(&mut self, tracer: &mut impl Tracer) {
562        self.clk += 1_u32;
563
564        tracer.increment_clk();
565    }
566
567    async fn load_mast_forest<E>(
568        &mut self,
569        node_digest: Word,
570        host: &mut impl AsyncHost,
571        get_mast_forest_failed: impl Fn(Word, &E) -> ExecutionError,
572        err_ctx: &E,
573    ) -> Result<(MastNodeId, Arc<MastForest>), ExecutionError>
574    where
575        E: ErrorContext,
576    {
577        let mast_forest = host
578            .get_mast_forest(&node_digest)
579            .await
580            .ok_or_else(|| get_mast_forest_failed(node_digest, err_ctx))?;
581
582        // We limit the parts of the program that can be called externally to procedure
583        // roots, even though MAST doesn't have that restriction.
584        let root_id = mast_forest
585            .find_procedure_root(node_digest)
586            .ok_or(ExecutionError::malfored_mast_forest_in_host(node_digest, err_ctx))?;
587
588        // Merge the advice map of this forest into the advice provider.
589        // Note that the map may be merged multiple times if a different procedure from the same
590        // forest is called.
591        // For now, only compiled libraries contain non-empty advice maps, so for most cases,
592        // this call will be cheap.
593        self.advice
594            .extend_map(mast_forest.advice_map())
595            .map_err(|err| ExecutionError::advice_error(err, self.clk, err_ctx))?;
596
597        Ok((root_id, mast_forest))
598    }
599
600    /// Increments the stack top pointer by 1.
601    ///
602    /// The bottom of the stack is never affected by this operation.
603    #[inline(always)]
604    fn increment_stack_size(&mut self, tracer: &mut impl Tracer) {
605        tracer.increment_stack_size(self);
606
607        self.stack_top_idx += 1;
608    }
609
610    /// Decrements the stack top pointer by 1.
611    ///
612    /// The bottom of the stack is only decremented in cases where the stack depth would become less
613    /// than 16.
614    #[inline(always)]
615    fn decrement_stack_size(&mut self, tracer: &mut impl Tracer) {
616        if self.stack_top_idx == MIN_STACK_DEPTH {
617            // We no longer have any room in the stack buffer to decrement the stack size (which
618            // would cause the `stack_bot_idx` to go below 0). We therefore reset the stack to its
619            // original position.
620            self.reset_stack_in_buffer(INITIAL_STACK_TOP_IDX);
621        }
622
623        self.stack_top_idx -= 1;
624        self.stack_bot_idx = min(self.stack_bot_idx, self.stack_top_idx - MIN_STACK_DEPTH);
625
626        tracer.decrement_stack_size();
627    }
628
629    /// Resets the stack in the buffer to a new position, preserving the top 16 elements of the
630    /// stack.
631    ///
632    /// # Preconditions
633    /// - The stack is expected to have exactly 16 elements.
634    #[inline(always)]
635    fn reset_stack_in_buffer(&mut self, new_stack_top_idx: usize) {
636        debug_assert_eq!(self.stack_depth(), MIN_STACK_DEPTH as u32);
637
638        let new_stack_bot_idx = new_stack_top_idx - MIN_STACK_DEPTH;
639
640        // Copy stack to its new position
641        self.stack
642            .copy_within(self.stack_bot_idx..self.stack_top_idx, new_stack_bot_idx);
643
644        // Zero out stack below the new new_stack_bot_idx, since this is where overflow values
645        // come from, and are guaranteed to be ZERO. We don't need to zero out above
646        // `stack_top_idx`, since values there are never read before being written.
647        self.stack[0..new_stack_bot_idx].fill(ZERO);
648
649        // Update indices.
650        self.stack_bot_idx = new_stack_bot_idx;
651        self.stack_top_idx = new_stack_top_idx;
652    }
653
654    // TESTING
655    // ----------------------------------------------------------------------------------------------
656
657    /// Convenience sync wrapper to [Self::execute] for testing purposes.
658    #[cfg(any(test, feature = "testing"))]
659    pub fn execute_sync(
660        self,
661        program: &Program,
662        host: &mut impl AsyncHost,
663    ) -> Result<StackOutputs, ExecutionError> {
664        // Create a new Tokio runtime and block on the async execution
665        let rt = tokio::runtime::Builder::new_current_thread().build().unwrap();
666
667        let execution_output = rt.block_on(self.execute(program, host))?;
668
669        Ok(execution_output.stack)
670    }
671
672    /// Convenience sync wrapper to [Self::execute_for_trace] for testing purposes.
673    #[cfg(any(test, feature = "testing"))]
674    pub fn execute_for_trace_sync(
675        self,
676        program: &Program,
677        host: &mut impl AsyncHost,
678    ) -> Result<(ExecutionOutput, Vec<TraceFragmentContext>), ExecutionError> {
679        // Create a new Tokio runtime and block on the async execution
680        let rt = tokio::runtime::Builder::new_current_thread().build().unwrap();
681
682        rt.block_on(self.execute_for_trace(program, host))
683    }
684
685    /// Similar to [Self::execute_sync], but allows mutable access to the processor.
686    #[cfg(any(test, feature = "testing"))]
687    pub fn execute_sync_mut(
688        &mut self,
689        program: &Program,
690        host: &mut impl AsyncHost,
691    ) -> Result<StackOutputs, ExecutionError> {
692        // Create a new Tokio runtime and block on the async execution
693        let rt = tokio::runtime::Builder::new_current_thread().build().unwrap();
694
695        rt.block_on(self.execute_impl(program, host, &mut NoopTracer))
696    }
697}
698
699// EXECUTION OUTPUT
700// ===============================================================================================
701
702/// The output of a program execution, containing the state of the stack, advice provider, and
703/// memory at the end of the execution.
704#[derive(Debug)]
705pub struct ExecutionOutput {
706    pub stack: StackOutputs,
707    pub advice: AdviceProvider,
708    pub memory: Memory,
709}
710
711// FAST PROCESS STATE
712// ===============================================================================================
713
714#[derive(Debug)]
715pub struct FastProcessState<'a> {
716    pub(super) processor: &'a mut FastProcessor,
717}
718
719impl FastProcessor {
720    #[inline(always)]
721    pub fn state(&mut self) -> ProcessState<'_> {
722        ProcessState::Fast(FastProcessState { processor: self })
723    }
724}
725
726// EXECUTION CONTEXT INFO
727// ===============================================================================================
728
729/// Information about the execution context.
730///
731/// This struct is used to keep track of the information needed to return to the previous context
732/// upon return from a `call`, `syscall` or `dyncall`.
733#[derive(Debug)]
734struct ExecutionContextInfo {
735    /// This stores all the elements on the stack at the call site, excluding the top 16 elements.
736    /// This corresponds to the overflow table in [crate::Process].
737    overflow_stack: Vec<Felt>,
738    ctx: ContextId,
739    fn_hash: Word,
740    fmp: Felt,
741}