1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
use super::{Felt, FieldElement, NUM_RAND_ROWS};
use crate::{chiplets::Chiplets, utils::uninit_vector};
use alloc::vec::Vec;
use core::slice;
use miden_air::trace::main_trace::MainTrace;
#[cfg(test)]
use vm_core::{utils::ToElements, Operation};
// TRACE FRAGMENT
// ================================================================================================
/// TODO: add docs
pub struct TraceFragment<'a> {
data: Vec<&'a mut [Felt]>,
}
impl<'a> TraceFragment<'a> {
/// Creates a new TraceFragment with its data allocated to the specified capacity.
pub fn new(capacity: usize) -> Self {
TraceFragment {
data: Vec::with_capacity(capacity),
}
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the number of columns in this execution trace fragment.
pub fn width(&self) -> usize {
self.data.len()
}
/// Returns the number of rows in this execution trace fragment.
pub fn len(&self) -> usize {
self.data[0].len()
}
// DATA MUTATORS
// --------------------------------------------------------------------------------------------
/// Updates a single cell in this fragment with provided value.
#[inline(always)]
pub fn set(&mut self, row_idx: usize, col_idx: usize, value: Felt) {
self.data[col_idx][row_idx] = value;
}
/// Returns a mutable iterator to the columns of this fragment.
pub fn columns(&mut self) -> slice::IterMut<'_, &'a mut [Felt]> {
self.data.iter_mut()
}
/// Adds a new column to this fragment by pushing a mutable slice with the first `len`
/// elements of the provided column. Returns the rest of the provided column as a separate
/// mutable slice.
pub fn push_column_slice(&mut self, column: &'a mut [Felt], len: usize) -> &'a mut [Felt] {
let (column_fragment, rest) = column.split_at_mut(len);
self.data.push(column_fragment);
rest
}
// TEST METHODS
// --------------------------------------------------------------------------------------------
#[cfg(test)]
pub fn trace_to_fragment(trace: &'a mut [Vec<Felt>]) -> Self {
let mut data = Vec::new();
for column in trace.iter_mut() {
data.push(column.as_mut_slice());
}
Self { data }
}
}
// TRACE LENGTH SUMMARY
// ================================================================================================
/// Contains the data about lengths of the trace parts.
///
/// - `main_trace_len` contains the length of the main trace.
/// - `range_trace_len` contains the length of the range checker trace.
/// - `chiplets_trace_len` contains the trace lengths of the all chiplets (hash, bitwise, memory,
/// kernel ROM)
#[derive(Debug, Default, Eq, PartialEq, Clone, Copy)]
pub struct TraceLenSummary {
main_trace_len: usize,
range_trace_len: usize,
chiplets_trace_len: ChipletsLengths,
}
impl TraceLenSummary {
pub fn new(
main_trace_len: usize,
range_trace_len: usize,
chiplets_trace_len: ChipletsLengths,
) -> Self {
TraceLenSummary {
main_trace_len,
range_trace_len,
chiplets_trace_len,
}
}
/// Returns length of the main trace.
pub fn main_trace_len(&self) -> usize {
self.main_trace_len
}
/// Returns length of the range checker trace.
pub fn range_trace_len(&self) -> usize {
self.range_trace_len
}
/// Returns [ChipletsLengths] which contains trace lengths of all chilplets.
pub fn chiplets_trace_len(&self) -> ChipletsLengths {
self.chiplets_trace_len
}
/// Returns the maximum of all component lengths.
pub fn trace_len(&self) -> usize {
self.range_trace_len
.max(self.main_trace_len)
.max(self.chiplets_trace_len.trace_len())
}
/// Returns `trace_len` rounded up to the next power of two.
pub fn padded_trace_len(&self) -> usize {
(self.trace_len() + NUM_RAND_ROWS).next_power_of_two()
}
/// Returns the percent (0 - 100) of the steps that were added to the trace to pad it to the
/// next power of tow.
pub fn padding_percentage(&self) -> usize {
(self.padded_trace_len() - self.trace_len()) * 100 / self.padded_trace_len()
}
}
/// Contains trace lengths of all chilplets: hash, bitwise, memory and kernel ROM trace
/// lengths.
#[derive(Default, Clone, Copy, Debug, PartialEq, Eq)]
pub struct ChipletsLengths {
hash_chiplet_len: usize,
bitwise_chiplet_len: usize,
memory_chiplet_len: usize,
kernel_rom_len: usize,
}
impl ChipletsLengths {
pub fn new(chiplets: &Chiplets) -> Self {
ChipletsLengths {
hash_chiplet_len: chiplets.bitwise_start(),
bitwise_chiplet_len: chiplets.memory_start() - chiplets.bitwise_start(),
memory_chiplet_len: chiplets.kernel_rom_start() - chiplets.memory_start(),
kernel_rom_len: chiplets.padding_start() - chiplets.kernel_rom_start(),
}
}
pub fn from_parts(
hash_len: usize,
bitwise_len: usize,
memory_len: usize,
kernel_len: usize,
) -> Self {
ChipletsLengths {
hash_chiplet_len: hash_len,
bitwise_chiplet_len: bitwise_len,
memory_chiplet_len: memory_len,
kernel_rom_len: kernel_len,
}
}
/// Returns the length of the hash chiplet trace
pub fn hash_chiplet_len(&self) -> usize {
self.hash_chiplet_len
}
/// Returns the length of the bitwise trace
pub fn bitwise_chiplet_len(&self) -> usize {
self.bitwise_chiplet_len
}
/// Returns the length of the memory trace
pub fn memory_chiplet_len(&self) -> usize {
self.memory_chiplet_len
}
/// Returns the length of the kernel ROM trace
pub fn kernel_rom_len(&self) -> usize {
self.kernel_rom_len
}
/// Returns the length of the trace required to accommodate chiplet components and 1
/// mandatory padding row required for ensuring sufficient trace length for auxiliary connector
/// columns that rely on the memory chiplet.
pub fn trace_len(&self) -> usize {
self.hash_chiplet_len()
+ self.bitwise_chiplet_len()
+ self.memory_chiplet_len()
+ self.kernel_rom_len()
+ 1
}
}
// AUXILIARY COLUMN BUILDER
// ================================================================================================
/// Defines a builder responsible for building a single column in an auxiliary segment of the
/// execution trace.
pub trait AuxColumnBuilder<E: FieldElement<BaseField = Felt>> {
// REQUIRED METHODS
// --------------------------------------------------------------------------------------------
fn get_requests_at(&self, main_trace: &MainTrace, alphas: &[E], row_idx: usize) -> E;
fn get_responses_at(&self, main_trace: &MainTrace, alphas: &[E], row_idx: usize) -> E;
// PROVIDED METHODS
// --------------------------------------------------------------------------------------------
fn init_requests(&self, _main_trace: &MainTrace, _alphas: &[E]) -> E {
E::ONE
}
fn init_responses(&self, _main_trace: &MainTrace, _alphas: &[E]) -> E {
E::ONE
}
/// Builds the chiplets bus auxiliary trace column.
fn build_aux_column(&self, main_trace: &MainTrace, alphas: &[E]) -> Vec<E> {
let mut responses_prod: Vec<E> = unsafe { uninit_vector(main_trace.num_rows()) };
let mut requests: Vec<E> = unsafe { uninit_vector(main_trace.num_rows()) };
responses_prod[0] = self.init_responses(main_trace, alphas);
requests[0] = self.init_requests(main_trace, alphas);
let mut requests_running_prod = E::ONE;
for row_idx in 0..main_trace.num_rows() - 1 {
responses_prod[row_idx + 1] =
responses_prod[row_idx] * self.get_responses_at(main_trace, alphas, row_idx);
requests[row_idx + 1] = self.get_requests_at(main_trace, alphas, row_idx);
requests_running_prod *= requests[row_idx + 1];
}
let mut requests_running_divisor = requests_running_prod.inv();
let mut result_aux_column = responses_prod;
for i in (0..main_trace.num_rows()).rev() {
result_aux_column[i] *= requests_running_divisor;
requests_running_divisor *= requests[i];
}
result_aux_column
}
}
// TEST HELPERS
// ================================================================================================
#[cfg(test)]
pub fn build_span_with_respan_ops() -> (Vec<Operation>, Vec<Felt>) {
let iv = [1, 3, 5, 7, 9, 11, 13, 15, 17].to_elements();
let ops = vec![
Operation::Push(iv[0]),
Operation::Push(iv[1]),
Operation::Push(iv[2]),
Operation::Push(iv[3]),
Operation::Push(iv[4]),
Operation::Push(iv[5]),
Operation::Push(iv[6]),
// next batch
Operation::Push(iv[7]),
Operation::Push(iv[8]),
Operation::Add,
// drops to make sure stack overflow is empty on exit
Operation::Drop,
Operation::Drop,
Operation::Drop,
Operation::Drop,
Operation::Drop,
Operation::Drop,
Operation::Drop,
Operation::Drop,
];
(ops, iv)
}