1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(not(feature = "std"))]
#[macro_use]
extern crate alloc;
use miden_air::trace::{
CHIPLETS_WIDTH, DECODER_TRACE_WIDTH, MIN_TRACE_LEN, RANGE_CHECK_TRACE_WIDTH, STACK_TRACE_WIDTH,
SYS_TRACE_WIDTH,
};
pub use vm_core::{
chiplets::hasher::Digest, errors::InputError, utils::DeserializationError, AssemblyOp, Kernel,
Operation, Program, ProgramInfo, QuadExtension, StackInputs, StackOutputs, Word,
};
use vm_core::{
code_blocks::{
Call, CodeBlock, Join, Loop, OpBatch, Span, Split, OP_BATCH_SIZE, OP_GROUP_SIZE,
},
utils::collections::{BTreeMap, Vec},
AdviceInjector, CodeBlockTable, Decorator, DecoratorIterator, Felt, FieldElement,
StackTopState, StarkField, ONE, ZERO,
};
use winter_prover::ColMatrix;
mod decorators;
mod operations;
mod system;
use system::System;
pub use system::{FMP_MIN, SYSCALL_FMP_MIN};
mod decoder;
use decoder::Decoder;
mod stack;
use stack::Stack;
mod range;
use range::RangeChecker;
mod advice;
pub use advice::{
AdviceInputs, AdviceProvider, AdviceSource, MemAdviceProvider, RecAdviceProvider,
};
mod chiplets;
use chiplets::Chiplets;
mod trace;
pub use trace::ExecutionTrace;
use trace::TraceFragment;
mod errors;
pub use errors::{ExecutionError, Ext2InttError};
pub mod utils;
mod debug;
pub use debug::{AsmOpInfo, VmState, VmStateIterator};
// RE-EXPORTS
// ================================================================================================
pub mod math {
pub use vm_core::{Felt, FieldElement, StarkField};
pub use winter_prover::math::fft;
}
pub mod crypto {
pub use vm_core::crypto::{
hash::{Blake3_192, Blake3_256, ElementHasher, Hasher, Rpo256, RpoDigest},
merkle::{MerkleError, MerklePath, MerkleStore, MerkleTree, SimpleSmt},
random::{RandomCoin, RpoRandomCoin, WinterRandomCoin},
};
}
// TYPE ALIASES
// ================================================================================================
type QuadFelt = QuadExtension<Felt>;
type SysTrace = [Vec<Felt>; SYS_TRACE_WIDTH];
pub struct DecoderTrace {
trace: [Vec<Felt>; DECODER_TRACE_WIDTH],
aux_trace_hints: decoder::AuxTraceHints,
}
pub struct StackTrace {
trace: [Vec<Felt>; STACK_TRACE_WIDTH],
aux_builder: stack::AuxTraceBuilder,
}
pub struct RangeCheckTrace {
trace: [Vec<Felt>; RANGE_CHECK_TRACE_WIDTH],
aux_builder: range::AuxTraceBuilder,
}
pub struct ChipletsTrace {
trace: [Vec<Felt>; CHIPLETS_WIDTH],
aux_builder: chiplets::AuxTraceBuilder,
}
// EXECUTORS
// ================================================================================================
/// Returns an execution trace resulting from executing the provided program against the provided
/// inputs.
pub fn execute<A>(
program: &Program,
stack_inputs: StackInputs,
advice_provider: A,
) -> Result<ExecutionTrace, ExecutionError>
where
A: AdviceProvider,
{
let mut process = Process::new(program.kernel().clone(), stack_inputs, advice_provider);
let stack_outputs = process.execute(program)?;
let trace = ExecutionTrace::new(process, stack_outputs);
assert_eq!(&program.hash(), trace.program_hash(), "inconsistent program hash");
Ok(trace)
}
/// Returns an iterator which allows callers to step through the execution and inspect VM state at
/// each execution step.
pub fn execute_iter<A>(
program: &Program,
stack_inputs: StackInputs,
advice_provider: A,
) -> VmStateIterator
where
A: AdviceProvider,
{
let mut process = Process::new_debug(program.kernel().clone(), stack_inputs, advice_provider);
let result = process.execute(program);
if result.is_ok() {
assert_eq!(
program.hash(),
process.decoder.program_hash().into(),
"inconsistent program hash"
);
}
VmStateIterator::new(process, result)
}
// PROCESS
// ================================================================================================
#[cfg(not(any(test, feature = "internals")))]
struct Process<A>
where
A: AdviceProvider,
{
system: System,
decoder: Decoder,
stack: Stack,
range: RangeChecker,
chiplets: Chiplets,
advice_provider: A,
}
impl<A> Process<A>
where
A: AdviceProvider,
{
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates a new process with the provided inputs.
pub fn new(kernel: Kernel, stack_inputs: StackInputs, advice_provider: A) -> Self {
Self::initialize(kernel, stack_inputs, advice_provider, false)
}
/// Creates a new process with provided inputs and debug options enabled.
pub fn new_debug(kernel: Kernel, stack_inputs: StackInputs, advice_provider: A) -> Self {
Self::initialize(kernel, stack_inputs, advice_provider, true)
}
fn initialize(
kernel: Kernel,
stack: StackInputs,
advice_provider: A,
in_debug_mode: bool,
) -> Self {
Self {
system: System::new(MIN_TRACE_LEN),
decoder: Decoder::new(in_debug_mode),
stack: Stack::new(&stack, MIN_TRACE_LEN, in_debug_mode),
range: RangeChecker::new(),
chiplets: Chiplets::new(kernel),
advice_provider,
}
}
// PROGRAM EXECUTOR
// --------------------------------------------------------------------------------------------
/// Executes the provided [Program] in this process.
pub fn execute(&mut self, program: &Program) -> Result<StackOutputs, ExecutionError> {
assert_eq!(self.system.clk(), 0, "a program has already been executed in this process");
self.execute_code_block(program.root(), program.cb_table())?;
Ok(self.stack.build_stack_outputs())
}
// CODE BLOCK EXECUTORS
// --------------------------------------------------------------------------------------------
/// Executes the specified [CodeBlock].
///
/// # Errors
/// Returns an [ExecutionError] if executing the specified block fails for any reason.
fn execute_code_block(
&mut self,
block: &CodeBlock,
cb_table: &CodeBlockTable,
) -> Result<(), ExecutionError> {
match block {
CodeBlock::Join(block) => self.execute_join_block(block, cb_table),
CodeBlock::Split(block) => self.execute_split_block(block, cb_table),
CodeBlock::Loop(block) => self.execute_loop_block(block, cb_table),
CodeBlock::Call(block) => self.execute_call_block(block, cb_table),
CodeBlock::Span(block) => self.execute_span_block(block),
CodeBlock::Proxy(_) => Err(ExecutionError::UnexecutableCodeBlock(block.clone())),
}
}
/// Executes the specified [Join] block.
#[inline(always)]
fn execute_join_block(
&mut self,
block: &Join,
cb_table: &CodeBlockTable,
) -> Result<(), ExecutionError> {
self.start_join_block(block)?;
// execute first and then second child of the join block
self.execute_code_block(block.first(), cb_table)?;
self.execute_code_block(block.second(), cb_table)?;
self.end_join_block(block)
}
/// Executes the specified [Split] block.
#[inline(always)]
fn execute_split_block(
&mut self,
block: &Split,
cb_table: &CodeBlockTable,
) -> Result<(), ExecutionError> {
// start the SPLIT block; this also pops the stack and returns the popped element
let condition = self.start_split_block(block)?;
// execute either the true or the false branch of the split block based on the condition
if condition == ONE {
self.execute_code_block(block.on_true(), cb_table)?;
} else if condition == ZERO {
self.execute_code_block(block.on_false(), cb_table)?;
} else {
return Err(ExecutionError::NotBinaryValue(condition));
}
self.end_split_block(block)
}
/// Executes the specified [Loop] block.
#[inline(always)]
fn execute_loop_block(
&mut self,
block: &Loop,
cb_table: &CodeBlockTable,
) -> Result<(), ExecutionError> {
// start the LOOP block; this also pops the stack and returns the popped element
let condition = self.start_loop_block(block)?;
// if the top of the stack is ONE, execute the loop body; otherwise skip the loop body
if condition == ONE {
// execute the loop body at least once
self.execute_code_block(block.body(), cb_table)?;
// keep executing the loop body until the condition on the top of the stack is no
// longer ONE; each iteration of the loop is preceded by executing REPEAT operation
// which drops the condition from the stack
while self.stack.peek() == ONE {
self.decoder.repeat();
self.execute_op(Operation::Drop)?;
self.execute_code_block(block.body(), cb_table)?;
}
// end the LOOP block and drop the condition from the stack
self.end_loop_block(block, true)
} else if condition == ZERO {
// end the LOOP block, but don't drop the condition from the stack because it was
// already dropped when we started the LOOP block
self.end_loop_block(block, false)
} else {
Err(ExecutionError::NotBinaryValue(condition))
}
}
/// Executes the specified [Call] block.
#[inline(always)]
fn execute_call_block(
&mut self,
block: &Call,
cb_table: &CodeBlockTable,
) -> Result<(), ExecutionError> {
// if this is a syscall, make sure the call target exists in the kernel
if block.is_syscall() {
self.chiplets.access_kernel_proc(block.fn_hash())?;
}
self.start_call_block(block)?;
// get function body from the code block table and execute it
let fn_body = cb_table
.get(block.fn_hash())
.ok_or_else(|| ExecutionError::CodeBlockNotFound(block.fn_hash()))?;
self.execute_code_block(fn_body, cb_table)?;
self.end_call_block(block)
}
/// Executes the specified [Span] block.
#[inline(always)]
fn execute_span_block(&mut self, block: &Span) -> Result<(), ExecutionError> {
self.start_span_block(block)?;
let mut op_offset = 0;
let mut decorators = block.decorator_iter();
// execute the first operation batch
self.execute_op_batch(&block.op_batches()[0], &mut decorators, op_offset)?;
op_offset += block.op_batches()[0].ops().len();
// if the span contains more operation batches, execute them. each additional batch is
// preceded by a RESPAN operation; executing RESPAN operation does not change the state
// of the stack
for op_batch in block.op_batches().iter().skip(1) {
self.respan(op_batch);
self.execute_op(Operation::Noop)?;
self.execute_op_batch(op_batch, &mut decorators, op_offset)?;
op_offset += op_batch.ops().len();
}
self.end_span_block(block)
}
/// Executes all operations in an [OpBatch]. This also ensures that all alignment rules are
/// satisfied by executing NOOPs as needed. Specifically:
/// - If an operation group ends with an operation carrying an immediate value, a NOOP is
/// executed after it.
/// - If the number of groups in a batch is not a power of 2, NOOPs are executed (one per
/// group) to bring it up to the next power of two (e.g., 3 -> 4, 5 -> 8).
#[inline(always)]
fn execute_op_batch(
&mut self,
batch: &OpBatch,
decorators: &mut DecoratorIterator,
op_offset: usize,
) -> Result<(), ExecutionError> {
let op_counts = batch.op_counts();
let mut op_idx = 0;
let mut group_idx = 0;
let mut next_group_idx = 1;
// round up the number of groups to be processed to the next power of two; we do this
// because the processor requires the number of groups to be either 1, 2, 4, or 8; if
// the actual number of groups is smaller, we'll pad the batch with NOOPs at the end
let num_batch_groups = batch.num_groups().next_power_of_two();
// execute operations in the batch one by one
for (i, &op) in batch.ops().iter().enumerate() {
while let Some(decorator) = decorators.next(i + op_offset) {
self.execute_decorator(decorator)?;
}
// decode and execute the operation
self.decoder.execute_user_op(op, op_idx);
self.execute_op(op)?;
// if the operation carries an immediate value, the value is stored at the next group
// pointer; so, we advance the pointer to the following group
let has_imm = op.imm_value().is_some();
if has_imm {
next_group_idx += 1;
}
// determine if we've executed all non-decorator operations in a group
if op_idx == op_counts[group_idx] - 1 {
// if we are at the end of the group, first check if the operation carries an
// immediate value
if has_imm {
// an operation with an immediate value cannot be the last operation in a group
// so, we need execute a NOOP after it. the assert also makes sure that there
// is enough room in the group to execute a NOOP (if there isn't, there is a
// bug somewhere in the assembler)
debug_assert!(op_idx < OP_GROUP_SIZE - 1, "invalid op index");
self.decoder.execute_user_op(Operation::Noop, op_idx + 1);
self.execute_op(Operation::Noop)?;
}
// then, move to the next group and reset operation index
group_idx = next_group_idx;
next_group_idx += 1;
op_idx = 0;
// if we haven't reached the end of the batch yet, set up the decoder for
// decoding the next operation group
if group_idx < num_batch_groups {
self.decoder.start_op_group(batch.groups()[group_idx]);
}
} else {
// if we are not at the end of the group, just increment the operation index
op_idx += 1;
}
}
// make sure we execute the required number of operation groups; this would happen when
// the actual number of operation groups was not a power of two
for group_idx in group_idx..num_batch_groups {
self.decoder.execute_user_op(Operation::Noop, 0);
self.execute_op(Operation::Noop)?;
// if we are not at the last group yet, set up the decoder for decoding the next
// operation groups. the groups were are processing are just NOOPs - so, the op group
// value is ZERO
if group_idx < num_batch_groups - 1 {
self.decoder.start_op_group(ZERO);
}
}
Ok(())
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
pub const fn kernel(&self) -> &Kernel {
self.chiplets.kernel()
}
pub fn get_memory_value(&self, ctx: u32, addr: u32) -> Option<Word> {
self.chiplets.get_mem_value(ctx, addr)
}
pub fn into_parts(self) -> (System, Decoder, Stack, RangeChecker, Chiplets, A) {
(
self.system,
self.decoder,
self.stack,
self.range,
self.chiplets,
self.advice_provider,
)
}
}
// INTERNALS
// ================================================================================================
#[cfg(any(test, feature = "internals"))]
pub struct Process<A>
where
A: AdviceProvider,
{
pub system: System,
pub decoder: Decoder,
pub stack: Stack,
pub range: RangeChecker,
pub chiplets: Chiplets,
pub advice_provider: A,
}