1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
use alloc::{collections::BTreeMap, string::ToString, vec::Vec};
use super::{
AccountError, AccountStorageDelta, ByteReader, ByteWriter, Deserializable,
DeserializationError, Digest, Felt, Hasher, Serializable, Word,
};
use crate::crypto::merkle::{LeafIndex, NodeIndex, SimpleSmt};
mod slot;
pub use slot::StorageSlotType;
mod map;
pub use map::StorageMap;
// CONSTANTS
// ================================================================================================
/// Depth of the storage tree.
pub const STORAGE_TREE_DEPTH: u8 = 8;
// TYPE ALIASES
// ================================================================================================
/// Represents a single storage slot item.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct SlotItem {
/// The index this item will occupy in the [AccountStorage] tree.
pub index: u8,
/// The type and value of the item.
pub slot: StorageSlot,
}
impl SlotItem {
/// Returns a new [SlotItem] with the [StorageSlotType::Value] type.
pub fn new_value(index: u8, arity: u8, value: Word) -> Self {
Self {
index,
slot: StorageSlot {
slot_type: StorageSlotType::Value { value_arity: arity },
value,
},
}
}
/// Returns a new [SlotItem] with the [StorageSlotType::Map] type.
pub fn new_map(index: u8, arity: u8, root: Word) -> Self {
Self {
index,
slot: StorageSlot {
slot_type: StorageSlotType::Map { value_arity: arity },
value: root,
},
}
}
/// Returns a new [SlotItem] with the [StorageSlotType::Array] type.
///
/// The max size of the array is set to 2^log_n and the value arity for the slot is set to 0.
pub fn new_array(index: u8, arity: u8, log_n: u8, root: Word) -> Self {
Self {
index,
slot: StorageSlot {
slot_type: StorageSlotType::Array { depth: log_n, value_arity: arity },
value: root,
},
}
}
}
/// Represents a single storage slot entry.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct StorageSlot {
/// The type of the value
pub slot_type: StorageSlotType,
/// The value itself.
///
/// The value can be a raw value or a commitment to the underlying data structure.
pub value: Word,
}
impl StorageSlot {
/// Returns a new [StorageSlot] with the provided value.
///
/// The value arity for the slot is set to 0.
pub fn new_value(value: Word) -> Self {
Self {
slot_type: StorageSlotType::Value { value_arity: 0 },
value,
}
}
/// Returns a new [StorageSlot] with a map defined by the provided root.
///
/// The value arity for the slot is set to 0.
pub fn new_map(root: Word) -> Self {
Self {
slot_type: StorageSlotType::Map { value_arity: 0 },
value: root,
}
}
/// Returns a new [StorageSlot] with an array defined by the provided root and the number of
/// elements.
///
/// The max size of the array is set to 2^log_n and the value arity for the slot is set to 0.
pub fn new_array(root: Word, log_n: u8) -> Self {
Self {
slot_type: StorageSlotType::Array { depth: log_n, value_arity: 0 },
value: root,
}
}
}
// ACCOUNT STORAGE
// ================================================================================================
/// Account storage consists of 256 index-addressable storage slots.
///
/// Each slot has a type which defines the size and the structure of the slot. Currently, the
/// following types are supported:
/// - Scalar: a sequence of up to 256 words.
/// - Array: a sparse array of up to 2^n values where n > 1 and n <= 64 and each value contains up
/// to 256 words.
/// - Map: a key-value map where keys are words and values contain up to 256 words.
///
/// Storage slots are stored in a simple Sparse Merkle Tree of depth 8. Slot 255 is always reserved
/// and contains information about slot types of all other slots.
///
/// Optionally, a user can make use of storage maps. Storage maps are represented by a SMT and
/// they can hold more data as there is in plain usage of the storage slots. The root of the SMT
/// consumes one storage slot.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AccountStorage {
slots: SimpleSmt<STORAGE_TREE_DEPTH>,
layout: Vec<StorageSlotType>,
maps: BTreeMap<u8, StorageMap>,
}
impl AccountStorage {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// Depth of the storage tree.
pub const STORAGE_TREE_DEPTH: u8 = STORAGE_TREE_DEPTH;
/// Total number of storage slots.
pub const NUM_STORAGE_SLOTS: usize = 256;
/// The storage slot at which the layout commitment is stored.
pub const SLOT_LAYOUT_COMMITMENT_INDEX: u8 = 255;
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Returns a new instance of account storage initialized with the provided items.
pub fn new(
items: Vec<SlotItem>,
maps: BTreeMap<u8, StorageMap>,
) -> Result<AccountStorage, AccountError> {
// Empty layout
let mut layout = vec![StorageSlotType::default(); AccountStorage::NUM_STORAGE_SLOTS];
layout[usize::from(AccountStorage::SLOT_LAYOUT_COMMITMENT_INDEX)] =
StorageSlotType::Value { value_arity: 64 };
// The following loop will:
//
// - Validate the slot and check it doesn't assign a value to a reserved slot.
// - Extract the slot value.
// - Check that every map index has a corresponding map in `maps`.
// - Count the number of maps to validate `maps`.
//
// It won't detect duplicates, that is later done by the `SimpleSmt` instantiation.
//
let mut entries = Vec::with_capacity(AccountStorage::NUM_STORAGE_SLOTS);
let mut num_maps = 0;
for item in items {
if item.index == AccountStorage::SLOT_LAYOUT_COMMITMENT_INDEX {
return Err(AccountError::StorageSlotIsReserved(item.index));
}
if matches!(item.slot.slot_type, StorageSlotType::Map { .. }) {
// check that for every map index there is a map in maps
if !maps.contains_key(&item.index) {
return Err(AccountError::StorageMapNotFound(item.index));
}
num_maps += 1;
}
layout[usize::from(item.index)] = item.slot.slot_type;
entries.push((item.index.into(), item.slot.value))
}
// add layout commitment entry
entries.push((
AccountStorage::SLOT_LAYOUT_COMMITMENT_INDEX.into(),
*layout_commitment(&layout),
));
// construct storage slots smt and populate the types vector.
let slots = SimpleSmt::<STORAGE_TREE_DEPTH>::with_leaves(entries)
.map_err(AccountError::DuplicateStorageItems)?;
// make sure the number of provide maps matches the number of map slots
if maps.len() != num_maps {
return Err(AccountError::StorageMapTooManyMaps {
expected: num_maps,
actual: maps.len(),
});
}
Ok(Self { slots, layout, maps })
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns a commitment to this storage.
pub fn root(&self) -> Digest {
self.slots.root()
}
/// Returns an item from the storage at the specified index.
///
/// If the item is not present in the storage, [crate::EMPTY_WORD] is returned.
pub fn get_item(&self, index: u8) -> Digest {
let item_index = NodeIndex::new(Self::STORAGE_TREE_DEPTH, index.into())
.expect("index is u8 - index within range");
self.slots.get_node(item_index).expect("index is u8 - index within range")
}
/// Returns a map item from the storage at the specified index.
///
/// If the item is not present in the storage, [crate::EMPTY_WORD] is returned.
pub fn get_map_item(&self, index: u8, key: Word) -> Result<Word, AccountError> {
let storage_map = self.maps.get(&index).ok_or(AccountError::StorageMapNotFound(index))?;
Ok(storage_map.get_value(&Digest::from(key)))
}
/// Returns a reference to the Sparse Merkle Tree that backs the storage slots.
pub fn slots(&self) -> &SimpleSmt<STORAGE_TREE_DEPTH> {
&self.slots
}
/// Returns layout info for this storage.
pub fn layout(&self) -> &[StorageSlotType] {
&self.layout
}
/// Returns a commitment to the storage layout.
pub fn layout_commitment(&self) -> Digest {
layout_commitment(&self.layout)
}
/// Returns the storage maps for this storage.
pub fn maps(&self) -> &BTreeMap<u8, StorageMap> {
&self.maps
}
// DATA MUTATORS
// --------------------------------------------------------------------------------------------
/// Applies the provided delta to this account storage.
///
/// # Errors
/// Returns an error if the updates violate storage layout constraints.
pub(super) fn apply_delta(&mut self, delta: &AccountStorageDelta) -> Result<(), AccountError> {
// --- update storage maps --------------------------------------------
for (&slot_idx, map_delta) in delta.maps().iter() {
let storage_map =
self.maps.get_mut(&slot_idx).ok_or(AccountError::StorageMapNotFound(slot_idx))?;
let new_root = storage_map.apply_delta(map_delta);
let index = LeafIndex::new(slot_idx.into()).expect("index is u8 - index within range");
self.slots.insert(index, new_root.into());
}
// --- update storage slots -------------------------------------------
for (&slot_idx, &slot_value) in delta.slots().iter() {
self.set_item(slot_idx, slot_value)?;
}
Ok(())
}
/// Updates the value of the storage slot at the specified index.
///
/// This method should be used only to update simple value slots. For updating values
/// in storage maps, please see [AccountStorage::set_map_item()].
///
/// # Errors
/// Returns an error if:
/// - The index specifies a reserved storage slot.
/// - The update tries to set a slot of type array.
/// - The update has a value arity different from 0.
pub fn set_item(&mut self, index: u8, value: Word) -> Result<Word, AccountError> {
// layout commitment slot cannot be updated
if index == Self::SLOT_LAYOUT_COMMITMENT_INDEX {
return Err(AccountError::StorageSlotIsReserved(index));
}
// only value slots of basic arity can currently be updated
match self.layout[index as usize] {
StorageSlotType::Value { value_arity } => {
if value_arity > 0 {
return Err(AccountError::StorageSlotInvalidValueArity {
slot: index,
expected: 0,
actual: value_arity,
});
}
},
slot_type => Err(AccountError::StorageSlotMapOrArrayNotAllowed(index, slot_type))?,
}
// update the slot and return
let index = LeafIndex::new(index.into()).expect("index is u8 - index within range");
let slot_value = self.slots.insert(index, value);
Ok(slot_value)
}
/// Updates the value of a key-value pair of a storage map at the specified index.
///
/// This method should be used only to update storage maps. For updating values
/// in storage slots, please see [AccountStorage::set_item()].
///
/// # Errors
/// Returns an error if:
/// - The index specifies a reserved storage slot.
/// - The index is not a map slot.
/// - The update tries to set a slot of type value or array.
/// - The update has a value arity different from 0.
pub fn set_map_item(
&mut self,
index: u8,
key: Word,
value: Word,
) -> Result<(Word, Word), AccountError> {
// layout commitment slot cannot be updated
if index == Self::SLOT_LAYOUT_COMMITMENT_INDEX {
return Err(AccountError::StorageSlotIsReserved(index));
}
// only map slots of basic arity can currently be updated
match self.layout[index as usize] {
StorageSlotType::Map { value_arity } => {
if value_arity > 0 {
return Err(AccountError::StorageSlotInvalidValueArity {
slot: index,
expected: 0,
actual: value_arity,
});
}
},
slot_type => Err(AccountError::MapsUpdateToNonMapsSlot(index, slot_type))?,
}
// get the correct map
let storage_map =
self.maps.get_mut(&index).ok_or(AccountError::StorageMapNotFound(index))?;
// get old map root to return
let old_map_root = storage_map.root();
// update the key-value pair in the map
let old_value = storage_map.insert(key.into(), value);
// update the root of the storage map in the corresponding storage slot
let index = LeafIndex::new(index.into()).expect("index is u8 - index within range");
self.slots.insert(index, storage_map.root().into());
Ok((old_map_root.into(), old_value))
}
}
// UTILITIES
// ------------------------------------------------------------------------------------------------
/// Computes the commitment to the given layout
fn layout_commitment(layout: &[StorageSlotType]) -> Digest {
Hasher::hash_elements(&layout.iter().map(Felt::from).collect::<Vec<_>>())
}
// SERIALIZATION
// ================================================================================================
impl Serializable for AccountStorage {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
// don't serialize last slot as it is a constant.
// complex types are all types different from StorageSlotType::Value { value_arity: 0 }
let complex_types = self.layout[..usize::from(AccountStorage::SLOT_LAYOUT_COMMITMENT_INDEX)]
.iter()
.enumerate()
// don't serialize default types, these are implied.
.filter(|(_, slot_type)| !slot_type.is_default())
.map(|(index, slot_type)| (u8::try_from(index).expect("Number of slot types is limited to u8"), slot_type))
.collect::<Vec<_>>();
complex_types.write_into(target);
let filled_slots = self
.slots
.leaves()
// don't serialize the default values, these are implied.
.filter(|(index, &value)| {
let slot_type = self.layout
[usize::try_from(*index).expect("Number of slot types is limited to u8")];
value != slot_type.default_word()
})
.map(|(index, value)| (u8::try_from(index).expect("Number of slot types is limited to u8"), value))
// don't serialized the layout commitment, it can be recomputed
.filter(|(index, _)| *index != AccountStorage::SLOT_LAYOUT_COMMITMENT_INDEX)
.collect::<Vec<_>>();
filled_slots.write_into(target);
// serialize the storage maps
self.maps.write_into(target);
}
}
impl Deserializable for AccountStorage {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
// read the non-default layout types
let complex_types = <Vec<(u8, StorageSlotType)>>::read_from(source)?;
let mut complex_types = BTreeMap::from_iter(complex_types);
// read the non-default entries
let filled_slots = <Vec<(u8, Word)>>::read_from(source)?;
let mut items: Vec<SlotItem> = Vec::new();
for (index, value) in filled_slots {
let slot_type = complex_types.remove(&index).unwrap_or_default();
items.push(SlotItem {
index,
slot: StorageSlot { slot_type, value },
});
}
// read the storage maps
let maps = <BTreeMap<u8, StorageMap>>::read_from(source)?;
Self::new(items, maps).map_err(|err| DeserializationError::InvalidValue(err.to_string()))
}
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use alloc::{collections::BTreeMap, vec::Vec};
use miden_crypto::hash::rpo::RpoDigest;
use super::{AccountStorage, Deserializable, Felt, Serializable, SlotItem, StorageMap, Word};
use crate::{ONE, ZERO};
#[test]
fn account_storage_serialization() {
// empty storage
let storage = AccountStorage::new(Vec::new(), BTreeMap::new()).unwrap();
let bytes = storage.to_bytes();
assert_eq!(storage, AccountStorage::read_from_bytes(&bytes).unwrap());
// storage with values for default types
let storage = AccountStorage::new(
vec![
SlotItem::new_value(0, 0, [ONE, ONE, ONE, ONE]),
SlotItem::new_value(2, 0, [ONE, ONE, ONE, ZERO]),
],
BTreeMap::new(),
)
.unwrap();
let bytes = storage.to_bytes();
assert_eq!(storage, AccountStorage::read_from_bytes(&bytes).unwrap());
// storage with values for complex types
let storage_map_leaves_2: [(RpoDigest, Word); 2] = [
(
RpoDigest::new([Felt::new(101), Felt::new(102), Felt::new(103), Felt::new(104)]),
[Felt::new(1_u64), Felt::new(2_u64), Felt::new(3_u64), Felt::new(4_u64)],
),
(
RpoDigest::new([Felt::new(105), Felt::new(106), Felt::new(107), Felt::new(108)]),
[Felt::new(5_u64), Felt::new(6_u64), Felt::new(7_u64), Felt::new(8_u64)],
),
];
let storage_map = StorageMap::with_entries(storage_map_leaves_2).unwrap();
let mut maps = BTreeMap::new();
maps.insert(2, storage_map.clone());
let storage = AccountStorage::new(
vec![
SlotItem::new_value(0, 1, [ONE, ONE, ONE, ONE]),
SlotItem::new_value(1, 0, [ONE, ONE, ONE, ZERO]),
SlotItem::new_map(2, 0, storage_map.root().into()),
SlotItem::new_array(3, 3, 4, [ONE, ZERO, ZERO, ZERO]),
],
maps,
)
.unwrap();
let bytes = storage.to_bytes();
assert_eq!(storage, AccountStorage::read_from_bytes(&bytes).unwrap());
}
}