1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
use alloc::{collections::BTreeMap, vec::Vec};
use core::ops::Deref;

use vm_processor::AdviceMap;

use super::{Digest, Felt, Word};
use crate::{
    assembly::{Assembler, AssemblyContext, ProgramAst},
    notes::{NoteDetails, NoteId},
    vm::CodeBlock,
    TransactionScriptError,
};

// TRANSACTION ARGS
// ================================================================================================

/// A struct that represents optional transaction arguments.
///
/// - Transaction script: a program that is executed in a transaction after all input notes
///   scripts have been executed.
/// - Note arguments: data put onto the stack right before a note script is executed. These
///   are different from note inputs, as the user executing the transaction can specify arbitrary
///   note args.
/// - Advice map: Provides data needed by the runtime, like the details of a public output note.
#[derive(Clone, Debug, Default)]
pub struct TransactionArgs {
    tx_script: Option<TransactionScript>,
    note_args: BTreeMap<NoteId, Word>,
    advice_map: AdviceMap,
}

impl TransactionArgs {
    // CONSTRUCTORS
    // --------------------------------------------------------------------------------------------

    /// Returns new [TransactionArgs] instantiated with the provided transaction script and note
    /// arguments.
    ///
    /// If tx_script is provided, this also adds all mappings from the transaction script inputs
    /// to the advice map.
    pub fn new(
        tx_script: Option<TransactionScript>,
        note_args: Option<BTreeMap<NoteId, Word>>,
        mut advice_map: AdviceMap,
    ) -> Self {
        // add transaction script inputs to the advice map
        if let Some(ref tx_script) = tx_script {
            advice_map.extend(tx_script.inputs().iter().map(|(hash, input)| (*hash, input.clone())))
        }

        Self {
            tx_script,
            note_args: note_args.unwrap_or_default(),
            advice_map,
        }
    }

    /// Returns new [TransactionArgs] instantiated with the provided transaction script.
    pub fn with_tx_script(tx_script: TransactionScript) -> Self {
        Self::new(Some(tx_script), Some(BTreeMap::default()), AdviceMap::default())
    }

    /// Returns new [TransactionArgs] instantiated with the provided note arguments.
    pub fn with_note_args(note_args: BTreeMap<NoteId, Word>) -> Self {
        Self::new(None, Some(note_args), AdviceMap::default())
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns a reference to the transaction script.
    pub fn tx_script(&self) -> Option<&TransactionScript> {
        self.tx_script.as_ref()
    }

    /// Returns a reference to a specific note argument.
    pub fn get_note_args(&self, note_id: NoteId) -> Option<&Word> {
        self.note_args.get(&note_id)
    }

    /// Returns a reference to the args [AdviceMap].
    pub fn advice_map(&self) -> &AdviceMap {
        &self.advice_map
    }

    // STATE MUTATORS
    // --------------------------------------------------------------------------------------------

    /// Populates the advice inputs with the specified note details.
    ///
    /// The advice map is extended with the following keys:
    ///
    /// - recipient |-> recipient details (inputs_hash, script_hash, serial_num).
    /// - inputs_key |-> inputs, where inputs_key is computed by taking note inputs commitment and
    ///   adding ONE to its most significant element.
    /// - script_hash |-> script.
    pub fn add_expected_output_note<T: Deref<Target = NoteDetails>>(&mut self, note: &T) {
        let recipient = note.recipient();
        let inputs = note.inputs();
        let script = note.script();
        let script_encoded: Vec<Felt> = script.into();

        self.advice_map.insert(recipient.digest(), recipient.to_elements());
        self.advice_map.insert(inputs.commitment(), inputs.format_for_advice());
        self.advice_map.insert(script.hash(), script_encoded);
    }

    /// Populates the advice inputs with the specified note details.
    ///
    /// The advice map is extended with the following keys:
    ///
    /// - recipient |-> recipient details (inputs_hash, script_hash, serial_num)
    /// - inputs_key |-> inputs, where inputs_key is computed by taking note inputs commitment and
    ///   adding ONE to its most significant element.
    /// - script_hash |-> script
    pub fn extend_expected_output_notes<T, L>(&mut self, notes: L)
    where
        L: IntoIterator<Item = T>,
        T: Deref<Target = NoteDetails>,
    {
        for note in notes {
            self.add_expected_output_note(&note);
        }
    }

    /// Extends the internal advice map with the provided key-value pairs.
    pub fn extend_advice_map<T: IntoIterator<Item = (Digest, Vec<Felt>)>>(&mut self, iter: T) {
        self.advice_map.extend(iter)
    }
}

// TRANSACTION SCRIPT
// ================================================================================================

/// A struct that represents a transaction script.
///
/// A transaction script is a program that is executed in a transaction after all input notes
/// have been executed.
///
/// The [TransactionScript] object is composed of:
/// - [code](TransactionScript::code): the transaction script source code.
/// - [hash](TransactionScript::hash): the hash of the compiled transaction script.
/// - [inputs](TransactionScript::inputs): a map of key, value inputs that are loaded into the
///   advice map such that the transaction script can access them.
#[derive(Clone, Debug)]
pub struct TransactionScript {
    code: ProgramAst,
    hash: Digest,
    inputs: BTreeMap<Digest, Vec<Felt>>,
}

impl TransactionScript {
    // CONSTRUCTORS
    // --------------------------------------------------------------------------------------------

    /// Returns a new instance of a [TransactionScript] with the provided script and inputs and the
    /// compiled script code block.
    ///
    /// # Errors
    /// Returns an error if script compilation fails.
    pub fn new<T: IntoIterator<Item = (Word, Vec<Felt>)>>(
        code: ProgramAst,
        inputs: T,
        assembler: &Assembler,
    ) -> Result<(Self, CodeBlock), TransactionScriptError> {
        let code_block = assembler
            .compile_in_context(&code, &mut AssemblyContext::for_program(Some(&code)))
            .map_err(TransactionScriptError::ScriptCompilationError)?;
        Ok((
            Self {
                code,
                hash: code_block.hash(),
                inputs: inputs.into_iter().map(|(k, v)| (k.into(), v)).collect(),
            },
            code_block,
        ))
    }

    /// Returns a new instance of a [TransactionScript] instantiated from the provided components.
    ///
    /// Note: this constructor does not verify that a compiled code in fact results in the provided
    /// hash.
    pub fn from_parts<T: IntoIterator<Item = (Word, Vec<Felt>)>>(
        code: ProgramAst,
        hash: Digest,
        inputs: T,
    ) -> Result<Self, TransactionScriptError> {
        Ok(Self {
            code,
            hash,
            inputs: inputs.into_iter().map(|(k, v)| (k.into(), v)).collect(),
        })
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns a reference to the code.
    pub fn code(&self) -> &ProgramAst {
        &self.code
    }

    /// Returns a reference to the code hash.
    pub fn hash(&self) -> &Digest {
        &self.hash
    }

    /// Returns a reference to the inputs.
    pub fn inputs(&self) -> &BTreeMap<Digest, Vec<Felt>> {
        &self.inputs
    }
}