1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use super::{
    AccountError, AccountStorageDelta, ByteReader, ByteWriter, Deserializable,
    DeserializationError, Digest, Felt, Hasher, Serializable, Word,
};
use crate::{
    crypto::merkle::{LeafIndex, NodeIndex, SimpleSmt},
    utils::{collections::*, string::*, vec},
};

mod slot;
pub use slot::StorageSlotType;

// CONSTANTS
// ================================================================================================

/// Depth of the storage tree.
pub const STORAGE_TREE_DEPTH: u8 = 8;

// TYPE ALIASES
// ================================================================================================

/// A type that represents a single storage slot item. The tuple contains the slot index of the item
/// and the entry of the item.
pub type SlotItem = (u8, StorageSlot);

/// A type that represents a single storage slot entry. The tuple contains the type of the slot and
/// the value of the slot - the value can be a raw value or a commitment to the underlying data
/// structure.
pub type StorageSlot = (StorageSlotType, Word);

// ACCOUNT STORAGE
// ================================================================================================

/// Account storage consists of 256 index-addressable storage slots.
///
/// Each slot has a type which defines the size and the structure of the slot. Currently, the
/// following types are supported:
/// - Scalar: a sequence of up to 256 words.
/// - Array: a sparse array of up to 2^n values where n > 1 and n <= 64 and each value contains up
///   to 256 words.
/// - Map: a key-value map where keys are words and values contain up to 256 words.
///
/// Storage slots are stored in a simple Sparse Merkle Tree of depth 8. Slot 255 is always reserved
/// and contains information about slot types of all other slots.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AccountStorage {
    slots: SimpleSmt<STORAGE_TREE_DEPTH>,
    layout: Vec<StorageSlotType>,
}

impl AccountStorage {
    // CONSTANTS
    // --------------------------------------------------------------------------------------------

    /// Depth of the storage tree.
    pub const STORAGE_TREE_DEPTH: u8 = STORAGE_TREE_DEPTH;

    /// Total number of storage slots.
    pub const NUM_STORAGE_SLOTS: usize = 256;

    /// The storage slot at which the layout commitment is stored.
    pub const SLOT_LAYOUT_COMMITMENT_INDEX: u8 = 255;

    // CONSTRUCTOR
    // --------------------------------------------------------------------------------------------
    /// Returns a new instance of account storage initialized with the provided items.
    pub fn new(items: Vec<SlotItem>) -> Result<AccountStorage, AccountError> {
        // initialize storage layout
        let mut layout = vec![StorageSlotType::default(); Self::NUM_STORAGE_SLOTS];

        // set the slot type for the layout commitment
        layout[Self::SLOT_LAYOUT_COMMITMENT_INDEX as usize] =
            StorageSlotType::Value { value_arity: 64 };

        // process entries to extract type data
        let mut entires = items
            .into_iter()
            .map(|x| {
                if x.0 == Self::SLOT_LAYOUT_COMMITMENT_INDEX {
                    return Err(AccountError::StorageSlotIsReserved(x.0));
                }

                let (slot_type, slot_value) = x.1;
                layout[x.0 as usize] = slot_type;
                Ok((x.0 as u64, slot_value))
            })
            .collect::<Result<Vec<_>, AccountError>>()?;

        // add layout commitment entry
        entires.push((
            Self::SLOT_LAYOUT_COMMITMENT_INDEX as u64,
            *Hasher::hash_elements(&layout.iter().map(Felt::from).collect::<Vec<_>>()),
        ));

        // construct storage slots smt and populate the types vector.
        let slots = SimpleSmt::<STORAGE_TREE_DEPTH>::with_leaves(entires)
            .map_err(AccountError::DuplicateStorageItems)?;

        Ok(Self { slots, layout })
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns a commitment to this storage.
    pub fn root(&self) -> Digest {
        self.slots.root()
    }

    /// Returns an item from the storage at the specified index.
    ///
    /// If the item is not present in the storage, [ZERO; 4] is returned.
    pub fn get_item(&self, index: u8) -> Digest {
        let item_index = NodeIndex::new(Self::STORAGE_TREE_DEPTH, index as u64)
            .expect("index is u8 - index within range");
        self.slots.get_node(item_index).expect("index is u8 - index within range")
    }

    /// Returns a reference to the Sparse Merkle Tree that backs the storage slots.
    pub fn slots(&self) -> &SimpleSmt<STORAGE_TREE_DEPTH> {
        &self.slots
    }

    /// Returns layout info for this storage.
    pub fn layout(&self) -> &[StorageSlotType] {
        &self.layout
    }

    /// Returns a commitment to the storage layout.
    pub fn layout_commitment(&self) -> Digest {
        Hasher::hash_elements(&self.layout.iter().map(Felt::from).collect::<Vec<_>>())
    }

    // DATA MUTATORS
    // --------------------------------------------------------------------------------------------

    /// Applies the provided delta to this account storage.
    ///
    /// This method assumes that the delta has been validated by the calling method and so, no
    /// additional validation of delta is performed.
    ///
    /// # Errors
    /// Returns an error if:
    /// - The delta implies an update to a reserved account slot.
    /// - The updates violate storage layout constraints.
    pub(super) fn apply_delta(&mut self, delta: &AccountStorageDelta) -> Result<(), AccountError> {
        for &slot_idx in delta.cleared_items.iter() {
            self.set_item(slot_idx, Word::default())?;
        }

        for &(slot_idx, slot_value) in delta.updated_items.iter() {
            self.set_item(slot_idx, slot_value)?;
        }

        Ok(())
    }

    /// Sets an item from the storage at the specified index.
    ///
    /// # Errors
    /// Returns an error if:
    /// - The index specifies a reserved storage slot.
    /// - The update violates storage layout constraints.
    pub fn set_item(&mut self, index: u8, value: Word) -> Result<Word, AccountError> {
        // layout commitment slot cannot be updated
        if index == Self::SLOT_LAYOUT_COMMITMENT_INDEX {
            return Err(AccountError::StorageSlotIsReserved(index));
        }

        // only value slots of basic arity can currently be updated
        match self.layout[index as usize] {
            StorageSlotType::Value { value_arity } => {
                if value_arity > 0 {
                    return Err(AccountError::StorageSlotInvalidValueArity {
                        slot: index,
                        expected: 0,
                        actual: value_arity,
                    });
                }
            },
            slot_type => Err(AccountError::StorageSlotNotValueSlot(index, slot_type))?,
        }

        // update the slot and return
        let index = LeafIndex::new(index as u64).expect("index is u8 - index within range");
        let slot_value = self.slots.insert(index, value);
        Ok(slot_value)
    }
}

// SERIALIZATION
// ================================================================================================

impl Serializable for AccountStorage {
    fn write_into<W: ByteWriter>(&self, target: &mut W) {
        // serialize layout info; we don't serialize default type info as we'll assume that any
        // slot type that wasn't serialized was a default slot type. also we skip the last slot
        // type as it is a constant.
        let complex_types = self.layout[..255]
            .iter()
            .enumerate()
            .filter(|(_, slot_type)| !slot_type.is_default())
            .collect::<Vec<_>>();

        target.write_u8(complex_types.len() as u8);
        for (idx, slot_type) in complex_types {
            target.write_u8(idx as u8);
            target.write_u16(slot_type.into());
        }

        // serialize slot values; we serialize only non-empty values and also skip slot 255 as info
        // for this slot was already serialized as a part of serializing slot type info above
        let filled_slots = self
            .slots
            .leaves()
            .filter(|(idx, &value)| {
                // TODO: consider checking empty values for complex types as well
                value != SimpleSmt::<STORAGE_TREE_DEPTH>::EMPTY_VALUE
                    && *idx as u8 != AccountStorage::SLOT_LAYOUT_COMMITMENT_INDEX
            })
            .collect::<Vec<_>>();

        target.write_u8(filled_slots.len() as u8);
        for (idx, &value) in filled_slots {
            target.write_u8(idx as u8);
            target.write(value);
        }
    }
}

impl Deserializable for AccountStorage {
    fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
        // read complex types
        let mut complex_types = BTreeMap::new();
        let num_complex_types = source.read_u8()?;
        for _ in 0..num_complex_types {
            let idx = source.read_u8()?;
            let slot_type: StorageSlotType =
                source.read_u16()?.try_into().map_err(DeserializationError::InvalidValue)?;
            complex_types.insert(idx, slot_type);
        }

        // read filled slots and build a vector of slot items
        let mut items: Vec<SlotItem> = Vec::new();
        let num_filled_slots = source.read_u8()?;
        for _ in 0..num_filled_slots {
            let idx = source.read_u8()?;
            let slot_value: Word = source.read()?;
            let slot_type = complex_types.remove(&idx).unwrap_or_default();
            items.push((idx, (slot_type, slot_value)));
        }

        Self::new(items).map_err(|err| DeserializationError::InvalidValue(err.to_string()))
    }
}

// TESTS
// ================================================================================================

#[cfg(test)]
mod tests {
    use super::{AccountStorage, Deserializable, Serializable, StorageSlotType};
    use crate::{ONE, ZERO};

    #[test]
    fn account_storage_serialization() {
        // empty storage
        let storage = AccountStorage::new(Vec::new()).unwrap();
        let bytes = storage.to_bytes();
        assert_eq!(storage, AccountStorage::read_from_bytes(&bytes).unwrap());

        // storage with values for default types
        let storage = AccountStorage::new(vec![
            (0, (StorageSlotType::default(), [ONE, ONE, ONE, ONE])),
            (2, (StorageSlotType::default(), [ONE, ONE, ONE, ZERO])),
        ])
        .unwrap();
        let bytes = storage.to_bytes();
        assert_eq!(storage, AccountStorage::read_from_bytes(&bytes).unwrap());

        // storage with a mix of types
        let storage = AccountStorage::new(vec![
            (0, (StorageSlotType::Value { value_arity: 1 }, [ONE, ONE, ONE, ONE])),
            (1, (StorageSlotType::Value { value_arity: 0 }, [ONE, ONE, ONE, ZERO])),
            (2, (StorageSlotType::Map { value_arity: 2 }, [ONE, ONE, ZERO, ZERO])),
            (
                3,
                (StorageSlotType::Array { depth: 4, value_arity: 3 }, [ONE, ZERO, ZERO, ZERO]),
            ),
        ])
        .unwrap();
        let bytes = storage.to_bytes();
        assert_eq!(storage, AccountStorage::read_from_bytes(&bytes).unwrap());
    }
}