1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
use super::{
EmptySubtreeRoots, Felt, InnerNode, InnerNodeInfo, LeafIndex, MerkleError, MerklePath,
NodeIndex, Rpo256, RpoDigest, SparseMerkleTree, Word, EMPTY_WORD,
};
use alloc::{
collections::{BTreeMap, BTreeSet},
string::ToString,
vec::Vec,
};
mod error;
pub use error::{SmtLeafError, SmtProofError};
mod leaf;
pub use leaf::SmtLeaf;
mod proof;
pub use proof::SmtProof;
use winter_utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
#[cfg(test)]
mod tests;
// CONSTANTS
// ================================================================================================
pub const SMT_DEPTH: u8 = 64;
// SMT
// ================================================================================================
/// Sparse Merkle tree mapping 256-bit keys to 256-bit values. Both keys and values are represented
/// by 4 field elements.
///
/// All leaves sit at depth 64. The most significant element of the key is used to identify the leaf to
/// which the key maps.
///
/// A leaf is either empty, or holds one or more key-value pairs. An empty leaf hashes to the empty
/// word. Otherwise, a leaf hashes to the hash of its key-value pairs, ordered by key first, value
/// second.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Smt {
root: RpoDigest,
leaves: BTreeMap<u64, SmtLeaf>,
inner_nodes: BTreeMap<NodeIndex, InnerNode>,
}
impl Smt {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// The default value used to compute the hash of empty leaves
pub const EMPTY_VALUE: Word = <Self as SparseMerkleTree<SMT_DEPTH>>::EMPTY_VALUE;
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns a new [Smt].
///
/// All leaves in the returned tree are set to [Self::EMPTY_VALUE].
pub fn new() -> Self {
let root = *EmptySubtreeRoots::entry(SMT_DEPTH, 0);
Self {
root,
leaves: BTreeMap::new(),
inner_nodes: BTreeMap::new(),
}
}
/// Returns a new [Smt] instantiated with leaves set as specified by the provided entries.
///
/// All leaves omitted from the entries list are set to [Self::EMPTY_VALUE].
///
/// # Errors
/// Returns an error if the provided entries contain multiple values for the same key.
pub fn with_entries(
entries: impl IntoIterator<Item = (RpoDigest, Word)>,
) -> Result<Self, MerkleError> {
// create an empty tree
let mut tree = Self::new();
// This being a sparse data structure, the EMPTY_WORD is not assigned to the `BTreeMap`, so
// entries with the empty value need additional tracking.
let mut key_set_to_zero = BTreeSet::new();
for (key, value) in entries {
let old_value = tree.insert(key, value);
if old_value != EMPTY_WORD || key_set_to_zero.contains(&key) {
return Err(MerkleError::DuplicateValuesForIndex(
LeafIndex::<SMT_DEPTH>::from(key).value(),
));
}
if value == EMPTY_WORD {
key_set_to_zero.insert(key);
};
}
Ok(tree)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the depth of the tree
pub const fn depth(&self) -> u8 {
SMT_DEPTH
}
/// Returns the root of the tree
pub fn root(&self) -> RpoDigest {
<Self as SparseMerkleTree<SMT_DEPTH>>::root(self)
}
/// Returns the leaf to which `key` maps
pub fn get_leaf(&self, key: &RpoDigest) -> SmtLeaf {
<Self as SparseMerkleTree<SMT_DEPTH>>::get_leaf(self, key)
}
/// Returns the value associated with `key`
pub fn get_value(&self, key: &RpoDigest) -> Word {
let leaf_pos = LeafIndex::<SMT_DEPTH>::from(*key).value();
match self.leaves.get(&leaf_pos) {
Some(leaf) => leaf.get_value(key).unwrap_or_default(),
None => EMPTY_WORD,
}
}
/// Returns an opening of the leaf associated with `key`. Conceptually, an opening is a Merkle
/// path to the leaf, as well as the leaf itself.
pub fn open(&self, key: &RpoDigest) -> SmtProof {
<Self as SparseMerkleTree<SMT_DEPTH>>::open(self, key)
}
// ITERATORS
// --------------------------------------------------------------------------------------------
/// Returns an iterator over the leaves of this [Smt].
pub fn leaves(&self) -> impl Iterator<Item = (LeafIndex<SMT_DEPTH>, &SmtLeaf)> {
self.leaves
.iter()
.map(|(leaf_index, leaf)| (LeafIndex::new_max_depth(*leaf_index), leaf))
}
/// Returns an iterator over the key-value pairs of this [Smt].
pub fn entries(&self) -> impl Iterator<Item = &(RpoDigest, Word)> {
self.leaves().flat_map(|(_, leaf)| leaf.entries())
}
/// Returns an iterator over the inner nodes of this [Smt].
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.inner_nodes.values().map(|e| InnerNodeInfo {
value: e.hash(),
left: e.left,
right: e.right,
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Inserts a value at the specified key, returning the previous value associated with that key.
/// Recall that by definition, any key that hasn't been updated is associated with
/// [`Self::EMPTY_VALUE`].
///
/// This also recomputes all hashes between the leaf (associated with the key) and the root,
/// updating the root itself.
pub fn insert(&mut self, key: RpoDigest, value: Word) -> Word {
<Self as SparseMerkleTree<SMT_DEPTH>>::insert(self, key, value)
}
// HELPERS
// --------------------------------------------------------------------------------------------
/// Inserts `value` at leaf index pointed to by `key`. `value` is guaranteed to not be the empty
/// value, such that this is indeed an insertion.
fn perform_insert(&mut self, key: RpoDigest, value: Word) -> Option<Word> {
debug_assert_ne!(value, Self::EMPTY_VALUE);
let leaf_index: LeafIndex<SMT_DEPTH> = Self::key_to_leaf_index(&key);
match self.leaves.get_mut(&leaf_index.value()) {
Some(leaf) => leaf.insert(key, value),
None => {
self.leaves.insert(leaf_index.value(), SmtLeaf::Single((key, value)));
None
}
}
}
/// Removes key-value pair at leaf index pointed to by `key` if it exists.
fn perform_remove(&mut self, key: RpoDigest) -> Option<Word> {
let leaf_index: LeafIndex<SMT_DEPTH> = Self::key_to_leaf_index(&key);
if let Some(leaf) = self.leaves.get_mut(&leaf_index.value()) {
let (old_value, is_empty) = leaf.remove(key);
if is_empty {
self.leaves.remove(&leaf_index.value());
}
old_value
} else {
// there's nothing stored at the leaf; nothing to update
None
}
}
}
impl SparseMerkleTree<SMT_DEPTH> for Smt {
type Key = RpoDigest;
type Value = Word;
type Leaf = SmtLeaf;
type Opening = SmtProof;
const EMPTY_VALUE: Self::Value = EMPTY_WORD;
fn root(&self) -> RpoDigest {
self.root
}
fn set_root(&mut self, root: RpoDigest) {
self.root = root;
}
fn get_inner_node(&self, index: NodeIndex) -> InnerNode {
self.inner_nodes.get(&index).cloned().unwrap_or_else(|| {
let node = EmptySubtreeRoots::entry(SMT_DEPTH, index.depth() + 1);
InnerNode { left: *node, right: *node }
})
}
fn insert_inner_node(&mut self, index: NodeIndex, inner_node: InnerNode) {
self.inner_nodes.insert(index, inner_node);
}
fn remove_inner_node(&mut self, index: NodeIndex) {
let _ = self.inner_nodes.remove(&index);
}
fn insert_value(&mut self, key: Self::Key, value: Self::Value) -> Option<Self::Value> {
// inserting an `EMPTY_VALUE` is equivalent to removing any value associated with `key`
if value != Self::EMPTY_VALUE {
self.perform_insert(key, value)
} else {
self.perform_remove(key)
}
}
fn get_leaf(&self, key: &RpoDigest) -> Self::Leaf {
let leaf_pos = LeafIndex::<SMT_DEPTH>::from(*key).value();
match self.leaves.get(&leaf_pos) {
Some(leaf) => leaf.clone(),
None => SmtLeaf::new_empty(key.into()),
}
}
fn hash_leaf(leaf: &Self::Leaf) -> RpoDigest {
leaf.hash()
}
fn key_to_leaf_index(key: &RpoDigest) -> LeafIndex<SMT_DEPTH> {
let most_significant_felt = key[3];
LeafIndex::new_max_depth(most_significant_felt.as_int())
}
fn path_and_leaf_to_opening(path: MerklePath, leaf: SmtLeaf) -> SmtProof {
SmtProof::new_unchecked(path, leaf)
}
}
impl Default for Smt {
fn default() -> Self {
Self::new()
}
}
// CONVERSIONS
// ================================================================================================
impl From<Word> for LeafIndex<SMT_DEPTH> {
fn from(value: Word) -> Self {
// We use the most significant `Felt` of a `Word` as the leaf index.
Self::new_max_depth(value[3].as_int())
}
}
impl From<RpoDigest> for LeafIndex<SMT_DEPTH> {
fn from(value: RpoDigest) -> Self {
Word::from(value).into()
}
}
impl From<&RpoDigest> for LeafIndex<SMT_DEPTH> {
fn from(value: &RpoDigest) -> Self {
Word::from(value).into()
}
}
// SERIALIZATION
// ================================================================================================
impl Serializable for Smt {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
// Write the number of filled leaves for this Smt
target.write_usize(self.entries().count());
// Write each (key, value) pair
for (key, value) in self.entries() {
target.write(key);
target.write(value);
}
}
}
impl Deserializable for Smt {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
// Read the number of filled leaves for this Smt
let num_filled_leaves = source.read_usize()?;
let mut entries = Vec::with_capacity(num_filled_leaves);
for _ in 0..num_filled_leaves {
let key = source.read()?;
let value = source.read()?;
entries.push((key, value));
}
Self::with_entries(entries)
.map_err(|err| DeserializationError::InvalidValue(err.to_string()))
}
}
#[test]
fn test_smt_serialization_deserialization() {
// Smt for default types (empty map)
let smt_default = Smt::default();
let bytes = smt_default.to_bytes();
assert_eq!(smt_default, Smt::read_from_bytes(&bytes).unwrap());
// Smt with values
let smt_leaves_2: [(RpoDigest, Word); 2] = [
(
RpoDigest::new([Felt::new(101), Felt::new(102), Felt::new(103), Felt::new(104)]),
[Felt::new(1_u64), Felt::new(2_u64), Felt::new(3_u64), Felt::new(4_u64)],
),
(
RpoDigest::new([Felt::new(105), Felt::new(106), Felt::new(107), Felt::new(108)]),
[Felt::new(5_u64), Felt::new(6_u64), Felt::new(7_u64), Felt::new(8_u64)],
),
];
let smt = Smt::with_entries(smt_leaves_2).unwrap();
let bytes = smt.to_bytes();
assert_eq!(smt, Smt::read_from_bytes(&bytes).unwrap());
}