miden_core/operations/mod.rs
1use core::fmt;
2
3#[cfg(feature = "serde")]
4use serde::{Deserialize, Serialize};
5
6mod decorators;
7pub use decorators::{AssemblyOp, DebugOptions, Decorator, DecoratorIdIterator, DecoratorList};
8use opcode_constants::*;
9
10use crate::{
11 Felt,
12 utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable},
13};
14
15// OPERATIONS OP CODES
16// ================================================================================================
17
18/// Opcode patterns have the following meanings:
19/// - 00xxxxx operations do not shift the stack; constraint degree can be up to 2.
20/// - 010xxxx operations shift the stack the left; constraint degree can be up to 2.
21/// - 011xxxx operations shift the stack to the right; constraint degree can be up to 2.
22/// - 100xxx-: operations consume 4 range checks; constraint degree can be up to 3. These are used
23/// to encode most u32 operations.
24/// - 101xxx-: operations where constraint degree can be up to 3. These include control flow
25/// operations and some other operations requiring high degree constraints.
26/// - 11xxx--: operations where constraint degree can be up to 5. These include control flow
27/// operations and some other operations requiring very high degree constraints.
28#[rustfmt::skip]
29pub(super) mod opcode_constants {
30 pub const OPCODE_NOOP: u8 = 0b0000_0000;
31 pub const OPCODE_EQZ: u8 = 0b0000_0001;
32 pub const OPCODE_NEG: u8 = 0b0000_0010;
33 pub const OPCODE_INV: u8 = 0b0000_0011;
34 pub const OPCODE_INCR: u8 = 0b0000_0100;
35 pub const OPCODE_NOT: u8 = 0b0000_0101;
36 pub const OPCODE_FMPADD: u8 = 0b0000_0110;
37 pub const OPCODE_MLOAD: u8 = 0b0000_0111;
38 pub const OPCODE_SWAP: u8 = 0b0000_1000;
39 pub const OPCODE_CALLER: u8 = 0b0000_1001;
40 pub const OPCODE_MOVUP2: u8 = 0b0000_1010;
41 pub const OPCODE_MOVDN2: u8 = 0b0000_1011;
42 pub const OPCODE_MOVUP3: u8 = 0b0000_1100;
43 pub const OPCODE_MOVDN3: u8 = 0b0000_1101;
44 pub const OPCODE_ADVPOPW: u8 = 0b0000_1110;
45 pub const OPCODE_EXPACC: u8 = 0b0000_1111;
46
47 pub const OPCODE_MOVUP4: u8 = 0b0001_0000;
48 pub const OPCODE_MOVDN4: u8 = 0b0001_0001;
49 pub const OPCODE_MOVUP5: u8 = 0b0001_0010;
50 pub const OPCODE_MOVDN5: u8 = 0b0001_0011;
51 pub const OPCODE_MOVUP6: u8 = 0b0001_0100;
52 pub const OPCODE_MOVDN6: u8 = 0b0001_0101;
53 pub const OPCODE_MOVUP7: u8 = 0b0001_0110;
54 pub const OPCODE_MOVDN7: u8 = 0b0001_0111;
55 pub const OPCODE_SWAPW: u8 = 0b0001_1000;
56 pub const OPCODE_EXT2MUL: u8 = 0b0001_1001;
57 pub const OPCODE_MOVUP8: u8 = 0b0001_1010;
58 pub const OPCODE_MOVDN8: u8 = 0b0001_1011;
59 pub const OPCODE_SWAPW2: u8 = 0b0001_1100;
60 pub const OPCODE_SWAPW3: u8 = 0b0001_1101;
61 pub const OPCODE_SWAPDW: u8 = 0b0001_1110;
62 pub const OPCODE_EMIT: u8 = 0b0001_1111;
63
64 pub const OPCODE_ASSERT: u8 = 0b0010_0000;
65 pub const OPCODE_EQ: u8 = 0b0010_0001;
66 pub const OPCODE_ADD: u8 = 0b0010_0010;
67 pub const OPCODE_MUL: u8 = 0b0010_0011;
68 pub const OPCODE_AND: u8 = 0b0010_0100;
69 pub const OPCODE_OR: u8 = 0b0010_0101;
70 pub const OPCODE_U32AND: u8 = 0b0010_0110;
71 pub const OPCODE_U32XOR: u8 = 0b0010_0111;
72 pub const OPCODE_FRIE2F4: u8 = 0b0010_1000;
73 pub const OPCODE_DROP: u8 = 0b0010_1001;
74 pub const OPCODE_CSWAP: u8 = 0b0010_1010;
75 pub const OPCODE_CSWAPW: u8 = 0b0010_1011;
76 pub const OPCODE_MLOADW: u8 = 0b0010_1100;
77 pub const OPCODE_MSTORE: u8 = 0b0010_1101;
78 pub const OPCODE_MSTOREW: u8 = 0b0010_1110;
79 pub const OPCODE_FMPUPDATE: u8 = 0b0010_1111;
80
81 pub const OPCODE_PAD: u8 = 0b0011_0000;
82 pub const OPCODE_DUP0: u8 = 0b0011_0001;
83 pub const OPCODE_DUP1: u8 = 0b0011_0010;
84 pub const OPCODE_DUP2: u8 = 0b0011_0011;
85 pub const OPCODE_DUP3: u8 = 0b0011_0100;
86 pub const OPCODE_DUP4: u8 = 0b0011_0101;
87 pub const OPCODE_DUP5: u8 = 0b0011_0110;
88 pub const OPCODE_DUP6: u8 = 0b0011_0111;
89 pub const OPCODE_DUP7: u8 = 0b0011_1000;
90 pub const OPCODE_DUP9: u8 = 0b0011_1001;
91 pub const OPCODE_DUP11: u8 = 0b0011_1010;
92 pub const OPCODE_DUP13: u8 = 0b0011_1011;
93 pub const OPCODE_DUP15: u8 = 0b0011_1100;
94 pub const OPCODE_ADVPOP: u8 = 0b0011_1101;
95 pub const OPCODE_SDEPTH: u8 = 0b0011_1110;
96 pub const OPCODE_CLK: u8 = 0b0011_1111;
97
98 pub const OPCODE_U32ADD: u8 = 0b0100_0000;
99 pub const OPCODE_U32SUB: u8 = 0b0100_0010;
100 pub const OPCODE_U32MUL: u8 = 0b0100_0100;
101 pub const OPCODE_U32DIV: u8 = 0b0100_0110;
102 pub const OPCODE_U32SPLIT: u8 = 0b0100_1000;
103 pub const OPCODE_U32ASSERT2: u8 = 0b0100_1010;
104 pub const OPCODE_U32ADD3: u8 = 0b0100_1100;
105 pub const OPCODE_U32MADD: u8 = 0b0100_1110;
106
107 pub const OPCODE_HPERM: u8 = 0b0101_0000;
108 pub const OPCODE_MPVERIFY: u8 = 0b0101_0001;
109 pub const OPCODE_PIPE: u8 = 0b0101_0010;
110 pub const OPCODE_MSTREAM: u8 = 0b0101_0011;
111 pub const OPCODE_SPLIT: u8 = 0b0101_0100;
112 pub const OPCODE_LOOP: u8 = 0b0101_0101;
113 pub const OPCODE_SPAN: u8 = 0b0101_0110;
114 pub const OPCODE_JOIN: u8 = 0b0101_0111;
115 pub const OPCODE_DYN: u8 = 0b0101_1000;
116 pub const OPCODE_HORNEREXT: u8 = 0b0101_1001;
117 pub const OPCODE_PUSH: u8 = 0b0101_1011;
118 pub const OPCODE_DYNCALL: u8 = 0b0101_1100;
119 pub const OPCODE_EVALCIRCUIT: u8 = 0b0101_1101;
120
121 pub const OPCODE_MRUPDATE: u8 = 0b0110_0000;
122 pub const OPCODE_HORNERBASE: u8 = 0b0110_0100;
123 pub const OPCODE_SYSCALL: u8 = 0b0110_1000;
124 pub const OPCODE_CALL: u8 = 0b0110_1100;
125 pub const OPCODE_END: u8 = 0b0111_0000;
126 pub const OPCODE_REPEAT: u8 = 0b0111_0100;
127 pub const OPCODE_RESPAN: u8 = 0b0111_1000;
128 pub const OPCODE_HALT: u8 = 0b0111_1100;
129}
130
131// OPERATIONS
132// ================================================================================================
133
134/// A set of native VM operations which take exactly one cycle to execute.
135#[derive(Copy, Clone, Debug, Eq, PartialEq)]
136#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
137#[repr(u8)]
138pub enum Operation {
139 // ----- system operations -------------------------------------------------------------------
140 /// Advances cycle counter, but does not change the state of user stack.
141 Noop = OPCODE_NOOP,
142
143 /// Pops the stack; if the popped value is not 1, execution fails.
144 ///
145 /// The internal value specifies an error code associated with the error in case when the
146 /// execution fails.
147 Assert(Felt) = OPCODE_ASSERT,
148
149 /// Pops an element off the stack, adds the current value of the `fmp` register to it, and
150 /// pushes the result back onto the stack.
151 FmpAdd = OPCODE_FMPADD,
152
153 /// Pops an element off the stack and adds it to the current value of `fmp` register.
154 FmpUpdate = OPCODE_FMPUPDATE,
155
156 /// Pushes the current depth of the stack onto the stack.
157 SDepth = OPCODE_SDEPTH,
158
159 /// Overwrites the top four stack items with the hash of a function which initiated the current
160 /// SYSCALL. Thus, this operation can be executed only inside a SYSCALL code block.
161 Caller = OPCODE_CALLER,
162
163 /// Pushes the current value of the clock cycle onto the stack. This operation can be used to
164 /// measure the number of cycles it has taken to execute the program up to the current
165 /// instruction.
166 Clk = OPCODE_CLK,
167
168 /// Emits an event to the host.
169 ///
170 /// Semantics:
171 /// - Reads the event id from the top of the stack (as a `Felt`) without consuming it; the
172 /// caller is responsible for pushing and later dropping the id.
173 /// - User-defined events are conventionally derived from strings via
174 /// `hash_string_to_word(name)[0]` (Blake3-based) and may be emitted via immediate forms in
175 /// assembly (`emit.event("...")` or `emit.CONST` where `CONST=event("...")`).
176 /// - System events are still identified by specific 32-bit codes; the VM attempts to interpret
177 /// the stack `Felt` as `u32` to dispatch known system events, and otherwise forwards the
178 /// event to the host.
179 ///
180 /// This operation does not change the state of the user stack aside from reading the value.
181 Emit = OPCODE_EMIT,
182
183 // ----- flow control operations -------------------------------------------------------------
184 /// Marks the beginning of a join block.
185 Join = OPCODE_JOIN,
186
187 /// Marks the beginning of a split block.
188 Split = OPCODE_SPLIT,
189
190 /// Marks the beginning of a loop block.
191 Loop = OPCODE_LOOP,
192
193 /// Marks the beginning of a function call.
194 Call = OPCODE_CALL,
195
196 /// Marks the beginning of a dynamic code block, where the target is specified by the stack.
197 Dyn = OPCODE_DYN,
198
199 /// Marks the beginning of a dynamic function call, where the target is specified by the stack.
200 Dyncall = OPCODE_DYNCALL,
201
202 /// Marks the beginning of a kernel call.
203 SysCall = OPCODE_SYSCALL,
204
205 /// Marks the beginning of a span code block.
206 Span = OPCODE_SPAN,
207
208 /// Marks the end of a program block.
209 End = OPCODE_END,
210
211 /// Indicates that body of an executing loop should be executed again.
212 Repeat = OPCODE_REPEAT,
213
214 /// Starts processing a new operation batch.
215 Respan = OPCODE_RESPAN,
216
217 /// Indicates the end of the program. This is used primarily to pad the execution trace to
218 /// the required length. Once HALT operation is executed, no other operations can be executed
219 /// by the VM (HALT operation itself excepted).
220 Halt = OPCODE_HALT,
221
222 // ----- field operations --------------------------------------------------------------------
223 /// Pops two elements off the stack, adds them, and pushes the result back onto the stack.
224 Add = OPCODE_ADD,
225
226 /// Pops an element off the stack, negates it, and pushes the result back onto the stack.
227 Neg = OPCODE_NEG,
228
229 /// Pops two elements off the stack, multiplies them, and pushes the result back onto the
230 /// stack.
231 Mul = OPCODE_MUL,
232
233 /// Pops an element off the stack, computes its multiplicative inverse, and pushes the result
234 /// back onto the stack.
235 Inv = OPCODE_INV,
236
237 /// Pops an element off the stack, adds 1 to it, and pushes the result back onto the stack.
238 Incr = OPCODE_INCR,
239
240 /// Pops two elements off the stack, multiplies them, and pushes the result back onto the
241 /// stack.
242 ///
243 /// If either of the elements is greater than 1, execution fails. This operation is equivalent
244 /// to boolean AND.
245 And = OPCODE_AND,
246
247 /// Pops two elements off the stack and subtracts their product from their sum.
248 ///
249 /// If either of the elements is greater than 1, execution fails. This operation is equivalent
250 /// to boolean OR.
251 Or = OPCODE_OR,
252
253 /// Pops an element off the stack and subtracts it from 1.
254 ///
255 /// If the element is greater than one, the execution fails. This operation is equivalent to
256 /// boolean NOT.
257 Not = OPCODE_NOT,
258
259 /// Pops two elements off the stack and compares them. If the elements are equal, pushes 1
260 /// onto the stack, otherwise pushes 0 onto the stack.
261 Eq = OPCODE_EQ,
262
263 /// Pops an element off the stack and compares it to 0. If the element is 0, pushes 1 onto
264 /// the stack, otherwise pushes 0 onto the stack.
265 Eqz = OPCODE_EQZ,
266
267 /// Computes a single turn of exponent accumulation for the given inputs. This operation can be
268 /// be used to compute a single turn of power of a field element.
269 ///
270 /// The top 4 elements of the stack are expected to be arranged as follows (form the top):
271 /// - least significant bit of the exponent in the previous trace if there's an expacc call,
272 /// otherwise ZERO
273 /// - exponent of base number `a` for this turn
274 /// - accumulated power of base number `a` so far
275 /// - number which needs to be shifted to the right
276 ///
277 /// At the end of the operation, exponent is replaced with its square, current value of power
278 /// of base number `a` on exponent is incorporated into the accumulator and the number is
279 /// shifted to the right by one bit.
280 Expacc = OPCODE_EXPACC,
281
282 // ----- ext2 operations ---------------------------------------------------------------------
283 /// Computes the product of two elements in the extension field of degree 2 and pushes the
284 /// result back onto the stack as the third and fourth elements. Pushes 0 onto the stack as
285 /// the first and second elements.
286 Ext2Mul = OPCODE_EXT2MUL,
287
288 // ----- u32 operations ----------------------------------------------------------------------
289 /// Pops an element off the stack, splits it into upper and lower 32-bit values, and pushes
290 /// these values back onto the stack.
291 U32split = OPCODE_U32SPLIT,
292
293 /// Pops two elements off the stack, adds them, and splits the result into upper and lower
294 /// 32-bit values. Then pushes these values back onto the stack.
295 ///
296 /// If either of these elements is greater than or equal to 2^32, the result of this
297 /// operation is undefined.
298 U32add = OPCODE_U32ADD,
299
300 /// Pops two elements off the stack and checks if each of them represents a 32-bit value.
301 /// If both of them are, they are pushed back onto the stack, otherwise an error is returned.
302 ///
303 /// The internal value specifies an error code associated with the error in case when the
304 /// assertion fails.
305 U32assert2(Felt) = OPCODE_U32ASSERT2,
306
307 /// Pops three elements off the stack, adds them together, and splits the result into upper
308 /// and lower 32-bit values. Then pushes the result back onto the stack.
309 U32add3 = OPCODE_U32ADD3,
310
311 /// Pops two elements off the stack and subtracts the first element from the second. Then,
312 /// the result, together with a flag indicating whether subtraction underflowed is pushed
313 /// onto the stack.
314 ///
315 /// If their of the values is greater than or equal to 2^32, the result of this operation is
316 /// undefined.
317 U32sub = OPCODE_U32SUB,
318
319 /// Pops two elements off the stack, multiplies them, and splits the result into upper and
320 /// lower 32-bit values. Then pushes these values back onto the stack.
321 ///
322 /// If their of the values is greater than or equal to 2^32, the result of this operation is
323 /// undefined.
324 U32mul = OPCODE_U32MUL,
325
326 /// Pops two elements off the stack and multiplies them. Then pops the third element off the
327 /// stack, and adds it to the result. Finally, splits the result into upper and lower 32-bit
328 /// values, and pushes them onto the stack.
329 ///
330 /// If any of the three values is greater than or equal to 2^32, the result of this operation
331 /// is undefined.
332 U32madd = OPCODE_U32MADD,
333
334 /// Pops two elements off the stack and divides the second element by the first. Then pushes
335 /// the integer result of the division, together with the remainder, onto the stack.
336 ///
337 /// If their of the values is greater than or equal to 2^32, the result of this operation is
338 /// undefined.
339 U32div = OPCODE_U32DIV,
340
341 /// Pops two elements off the stack, computes their binary AND, and pushes the result back
342 /// onto the stack.
343 ///
344 /// If either of the elements is greater than or equal to 2^32, execution fails.
345 U32and = OPCODE_U32AND,
346
347 /// Pops two elements off the stack, computes their binary XOR, and pushes the result back
348 /// onto the stack.
349 ///
350 /// If either of the elements is greater than or equal to 2^32, execution fails.
351 U32xor = OPCODE_U32XOR,
352
353 // ----- stack manipulation ------------------------------------------------------------------
354 /// Pushes 0 onto the stack.
355 Pad = OPCODE_PAD,
356
357 /// Removes to element from the stack.
358 Drop = OPCODE_DROP,
359
360 /// Pushes a copy of stack element 0 onto the stack.
361 Dup0 = OPCODE_DUP0,
362
363 /// Pushes a copy of stack element 1 onto the stack.
364 Dup1 = OPCODE_DUP1,
365
366 /// Pushes a copy of stack element 2 onto the stack.
367 Dup2 = OPCODE_DUP2,
368
369 /// Pushes a copy of stack element 3 onto the stack.
370 Dup3 = OPCODE_DUP3,
371
372 /// Pushes a copy of stack element 4 onto the stack.
373 Dup4 = OPCODE_DUP4,
374
375 /// Pushes a copy of stack element 5 onto the stack.
376 Dup5 = OPCODE_DUP5,
377
378 /// Pushes a copy of stack element 6 onto the stack.
379 Dup6 = OPCODE_DUP6,
380
381 /// Pushes a copy of stack element 7 onto the stack.
382 Dup7 = OPCODE_DUP7,
383
384 /// Pushes a copy of stack element 9 onto the stack.
385 Dup9 = OPCODE_DUP9,
386
387 /// Pushes a copy of stack element 11 onto the stack.
388 Dup11 = OPCODE_DUP11,
389
390 /// Pushes a copy of stack element 13 onto the stack.
391 Dup13 = OPCODE_DUP13,
392
393 /// Pushes a copy of stack element 15 onto the stack.
394 Dup15 = OPCODE_DUP15,
395
396 /// Swaps stack elements 0 and 1.
397 Swap = OPCODE_SWAP,
398
399 /// Swaps stack elements 0, 1, 2, and 3 with elements 4, 5, 6, and 7.
400 SwapW = OPCODE_SWAPW,
401
402 /// Swaps stack elements 0, 1, 2, and 3 with elements 8, 9, 10, and 11.
403 SwapW2 = OPCODE_SWAPW2,
404
405 /// Swaps stack elements 0, 1, 2, and 3, with elements 12, 13, 14, and 15.
406 SwapW3 = OPCODE_SWAPW3,
407
408 /// Swaps the top two words pair wise.
409 ///
410 /// Input: [D, C, B, A, ...]
411 /// Output: [B, A, D, C, ...]
412 SwapDW = OPCODE_SWAPDW,
413
414 /// Moves stack element 2 to the top of the stack.
415 MovUp2 = OPCODE_MOVUP2,
416
417 /// Moves stack element 3 to the top of the stack.
418 MovUp3 = OPCODE_MOVUP3,
419
420 /// Moves stack element 4 to the top of the stack.
421 MovUp4 = OPCODE_MOVUP4,
422
423 /// Moves stack element 5 to the top of the stack.
424 MovUp5 = OPCODE_MOVUP5,
425
426 /// Moves stack element 6 to the top of the stack.
427 MovUp6 = OPCODE_MOVUP6,
428
429 /// Moves stack element 7 to the top of the stack.
430 MovUp7 = OPCODE_MOVUP7,
431
432 /// Moves stack element 8 to the top of the stack.
433 MovUp8 = OPCODE_MOVUP8,
434
435 /// Moves the top stack element to position 2 on the stack.
436 MovDn2 = OPCODE_MOVDN2,
437
438 /// Moves the top stack element to position 3 on the stack.
439 MovDn3 = OPCODE_MOVDN3,
440
441 /// Moves the top stack element to position 4 on the stack.
442 MovDn4 = OPCODE_MOVDN4,
443
444 /// Moves the top stack element to position 5 on the stack.
445 MovDn5 = OPCODE_MOVDN5,
446
447 /// Moves the top stack element to position 6 on the stack.
448 MovDn6 = OPCODE_MOVDN6,
449
450 /// Moves the top stack element to position 7 on the stack.
451 MovDn7 = OPCODE_MOVDN7,
452
453 /// Moves the top stack element to position 8 on the stack.
454 MovDn8 = OPCODE_MOVDN8,
455
456 /// Pops an element off the stack, and if the element is 1, swaps the top two remaining
457 /// elements on the stack. If the popped element is 0, the stack remains unchanged.
458 ///
459 /// If the popped element is neither 0 nor 1, execution fails.
460 CSwap = OPCODE_CSWAP,
461
462 /// Pops an element off the stack, and if the element is 1, swaps the remaining elements
463 /// 0, 1, 2, and 3 with elements 4, 5, 6, and 7. If the popped element is 0, the stack
464 /// remains unchanged.
465 ///
466 /// If the popped element is neither 0 nor 1, execution fails.
467 CSwapW = OPCODE_CSWAPW,
468
469 // ----- input / output ----------------------------------------------------------------------
470 /// Pushes the immediate value onto the stack.
471 Push(Felt) = OPCODE_PUSH,
472
473 /// Removes the next element from the advice stack and pushes it onto the operand stack.
474 AdvPop = OPCODE_ADVPOP,
475
476 /// Removes a word (4 elements) from the advice stack and overwrites the top four operand
477 /// stack elements with it.
478 AdvPopW = OPCODE_ADVPOPW,
479
480 /// Pops an element off the stack, interprets it as a memory address, and replaces the
481 /// remaining 4 elements at the top of the stack with values located at the specified address.
482 MLoadW = OPCODE_MLOADW,
483
484 /// Pops an element off the stack, interprets it as a memory address, and writes the remaining
485 /// 4 elements at the top of the stack into memory at the specified address.
486 MStoreW = OPCODE_MSTOREW,
487
488 /// Pops an element off the stack, interprets it as a memory address, and pushes the first
489 /// element of the word located at the specified address to the stack.
490 MLoad = OPCODE_MLOAD,
491
492 /// Pops an element off the stack, interprets it as a memory address, and writes the remaining
493 /// element at the top of the stack into the first element of the word located at the specified
494 /// memory address. The remaining 3 elements of the word are not affected.
495 MStore = OPCODE_MSTORE,
496
497 /// Loads two words from memory, and replaces the top 8 elements of the stack with them,
498 /// element-wise, in stack order.
499 ///
500 /// The operation works as follows:
501 /// - The memory address of the first word is retrieved from 13th stack element (position 12).
502 /// - Two consecutive words, starting at this address, are loaded from memory.
503 /// - The top 8 elements of the stack are overwritten with these words (element-wise, in stack
504 /// order).
505 /// - Memory address (in position 12) is incremented by 2.
506 /// - All other stack elements remain the same.
507 MStream = OPCODE_MSTREAM,
508
509 /// Pops two words from the advice stack, writes them to memory, and replaces the top 8
510 /// elements of the stack with them, element-wise, in stack order.
511 ///
512 /// The operation works as follows:
513 /// - Two words are popped from the advice stack.
514 /// - The destination memory address for the first word is retrieved from the 13th stack element
515 /// (position 12).
516 /// - The two words are written to memory consecutively, starting at this address.
517 /// - The top 8 elements of the stack are overwritten with these words (element-wise, in stack
518 /// order).
519 /// - Memory address (in position 12) is incremented by 2.
520 /// - All other stack elements remain the same.
521 Pipe = OPCODE_PIPE,
522
523 // ----- cryptographic operations ------------------------------------------------------------
524 /// Performs a Rescue Prime Optimized permutation on the top 3 words of the operand stack,
525 /// where the top 2 words are the rate (words C and B), the deepest word is the capacity (word
526 /// A), and the digest output is the middle word E.
527 ///
528 /// Stack transition:
529 /// [C, B, A, ...] -> [F, E, D, ...]
530 HPerm = OPCODE_HPERM,
531
532 /// Verifies that a Merkle path from the specified node resolves to the specified root. This
533 /// operation can be used to prove that the prover knows a path in the specified Merkle tree
534 /// which starts with the specified node.
535 ///
536 /// The stack is expected to be arranged as follows (from the top):
537 /// - value of the node, 4 elements.
538 /// - depth of the path, 1 element.
539 /// - index of the node, 1 element.
540 /// - root of the tree, 4 elements.
541 ///
542 /// The Merkle path itself is expected to be provided by the prover non-deterministically (via
543 /// merkle sets). If the prover is not able to provide the required path, the operation fails.
544 /// The state of the stack does not change.
545 ///
546 /// The internal value specifies an error code associated with the error in case when the
547 /// assertion fails.
548 MpVerify(Felt) = OPCODE_MPVERIFY,
549
550 /// Computes a new root of a Merkle tree where a node at the specified position is updated to
551 /// the specified value.
552 ///
553 /// The stack is expected to be arranged as follows (from the top):
554 /// - old value of the node, 4 element
555 /// - depth of the node, 1 element
556 /// - index of the node, 1 element
557 /// - current root of the tree, 4 elements
558 /// - new value of the node, 4 element
559 ///
560 /// The Merkle path for the node is expected to be provided by the prover non-deterministically
561 /// via the advice provider. At the end of the operation, the old node value is replaced with
562 /// the new root value, that is computed based on the provided path. Everything else on the
563 /// stack remains the same.
564 ///
565 /// The tree will always be copied into a new instance, meaning the advice provider will keep
566 /// track of both the old and new Merkle trees.
567 MrUpdate = OPCODE_MRUPDATE,
568
569 /// Performs FRI (Fast Reed-Solomon Interactive Oracle Proofs) layer folding by a factor of 4
570 /// for FRI protocol executed in a degree 2 extension of the base field.
571 ///
572 /// This operation:
573 /// - Folds 4 query values (v0, v1), (v2, v3), (v4, v5), (v6, v7) into a single value (ne0, ne1)
574 /// - Computes new value of the domain generator power: poe' = poe^4
575 /// - Increments layer pointer (cptr) by 2
576 /// - Checks that the previous folding was done correctly
577 /// - Shifts the stack to move an item from the overflow table to stack position 15
578 ///
579 /// Stack transition:
580 /// Input: [v7, v6, v5, v4, v3, v2, v1, v0, f_pos, d_seg, poe, pe1, pe0, a1, a0, cptr, ...]
581 /// Output: [t1, t0, s1, s0, df3, df2, df1, df0, poe^2, f_tau, cptr+2, poe^4, f_pos, ne1, ne0,
582 /// eptr, ...] where eptr is moved from the stack overflow table and is the address of the
583 /// final FRI layer.
584 FriE2F4 = OPCODE_FRIE2F4,
585
586 /// Performs 8 steps of the Horner evaluation method on a polynomial with coefficients over
587 /// the base field, i.e., it computes
588 ///
589 /// acc' = (((acc_tmp * alpha + c3) * alpha + c2) * alpha + c1) * alpha + c0
590 ///
591 /// where
592 ///
593 /// acc_tmp := (((acc * alpha + c7) * alpha + c6) * alpha + c5) * alpha + c4
594 ///
595 ///
596 /// In other words, the intsruction computes the evaluation at alpha of the polynomial
597 ///
598 /// P(X) := c7 * X^7 + c6 * X^6 + ... + c1 * X + c0
599 HornerBase = OPCODE_HORNERBASE,
600
601 /// Performs 4 steps of the Horner evaluation method on a polynomial with coefficients over
602 /// the extension field, i.e., it computes
603 ///
604 /// acc' = (((acc * alpha + c3) * alpha + c2) * alpha + c1) * alpha + c0
605 ///
606 /// In other words, the intsruction computes the evaluation at alpha of the polynomial
607 ///
608 /// P(X) := c3 * X^3 + c2 * X^2 + c1 * X + c0
609 HornerExt = OPCODE_HORNEREXT,
610
611 /// Evaluates an arithmetic circuit given a pointer to its description in memory, the number
612 /// of arithmetic gates, and the sum of the input and constant gates.
613 EvalCircuit = OPCODE_EVALCIRCUIT,
614}
615
616impl Operation {
617 pub const OP_BITS: usize = 7;
618
619 /// Returns the opcode of this operation.
620 #[rustfmt::skip]
621 pub fn op_code(&self) -> u8 {
622 // SAFETY: This is safe because we have given this enum a primitive representation with
623 // #[repr(u8)], with the first field of the underlying union-of-structs the discriminant.
624 //
625 // See the section on "accessing the numeric value of the discriminant"
626 // here: https://doc.rust-lang.org/std/mem/fn.discriminant.html
627 unsafe { *<*const _>::from(self).cast::<u8>() }
628 }
629
630 /// Returns an immediate value carried by this operation.
631 // Proptest generators for operations in crate::mast::node::basic_block_node::tests discriminate
632 // on this flag, please update them when you modify the semantics of this method.
633 pub fn imm_value(&self) -> Option<Felt> {
634 match *self {
635 Self::Push(imm) => Some(imm),
636 _ => None,
637 }
638 }
639
640 /// Returns true if this operation writes any data to the decoder hasher registers.
641 ///
642 /// In other words, if so, then the user op helper registers are not available.
643 pub fn populates_decoder_hasher_registers(&self) -> bool {
644 matches!(
645 self,
646 Self::End
647 | Self::Join
648 | Self::Split
649 | Self::Loop
650 | Self::Repeat
651 | Self::Respan
652 | Self::Span
653 | Self::Halt
654 | Self::Call
655 | Self::SysCall
656 )
657 }
658}
659
660impl crate::prettier::PrettyPrint for Operation {
661 fn render(&self) -> crate::prettier::Document {
662 crate::prettier::display(self)
663 }
664}
665
666impl fmt::Display for Operation {
667 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
668 match self {
669 // ----- system operations ------------------------------------------------------------
670 Self::Noop => write!(f, "noop"),
671 Self::Assert(err_code) => write!(f, "assert({err_code})"),
672
673 Self::FmpAdd => write!(f, "fmpadd"),
674 Self::FmpUpdate => write!(f, "fmpupdate"),
675
676 Self::SDepth => write!(f, "sdepth"),
677 Self::Caller => write!(f, "caller"),
678
679 Self::Clk => write!(f, "clk"),
680
681 // ----- flow control operations ------------------------------------------------------
682 Self::Join => write!(f, "join"),
683 Self::Split => write!(f, "split"),
684 Self::Loop => write!(f, "loop"),
685 Self::Call => writeln!(f, "call"),
686 Self::Dyncall => writeln!(f, "dyncall"),
687 Self::SysCall => writeln!(f, "syscall"),
688 Self::Dyn => writeln!(f, "dyn"),
689 Self::Span => write!(f, "span"),
690 Self::End => write!(f, "end"),
691 Self::Repeat => write!(f, "repeat"),
692 Self::Respan => write!(f, "respan"),
693 Self::Halt => write!(f, "halt"),
694
695 // ----- field operations -------------------------------------------------------------
696 Self::Add => write!(f, "add"),
697 Self::Neg => write!(f, "neg"),
698 Self::Mul => write!(f, "mul"),
699 Self::Inv => write!(f, "inv"),
700 Self::Incr => write!(f, "incr"),
701
702 Self::And => write!(f, "and"),
703 Self::Or => write!(f, "or"),
704 Self::Not => write!(f, "not"),
705
706 Self::Eq => write!(f, "eq"),
707 Self::Eqz => write!(f, "eqz"),
708
709 Self::Expacc => write!(f, "expacc"),
710
711 // ----- ext2 operations --------------------------------------------------------------
712 Self::Ext2Mul => write!(f, "ext2mul"),
713
714 // ----- u32 operations ---------------------------------------------------------------
715 Self::U32assert2(err_code) => write!(f, "u32assert2({err_code})"),
716 Self::U32split => write!(f, "u32split"),
717 Self::U32add => write!(f, "u32add"),
718 Self::U32add3 => write!(f, "u32add3"),
719 Self::U32sub => write!(f, "u32sub"),
720 Self::U32mul => write!(f, "u32mul"),
721 Self::U32madd => write!(f, "u32madd"),
722 Self::U32div => write!(f, "u32div"),
723
724 Self::U32and => write!(f, "u32and"),
725 Self::U32xor => write!(f, "u32xor"),
726
727 // ----- stack manipulation -----------------------------------------------------------
728 Self::Drop => write!(f, "drop"),
729 Self::Pad => write!(f, "pad"),
730
731 Self::Dup0 => write!(f, "dup0"),
732 Self::Dup1 => write!(f, "dup1"),
733 Self::Dup2 => write!(f, "dup2"),
734 Self::Dup3 => write!(f, "dup3"),
735 Self::Dup4 => write!(f, "dup4"),
736 Self::Dup5 => write!(f, "dup5"),
737 Self::Dup6 => write!(f, "dup6"),
738 Self::Dup7 => write!(f, "dup7"),
739 Self::Dup9 => write!(f, "dup9"),
740 Self::Dup11 => write!(f, "dup11"),
741 Self::Dup13 => write!(f, "dup13"),
742 Self::Dup15 => write!(f, "dup15"),
743
744 Self::Swap => write!(f, "swap"),
745 Self::SwapW => write!(f, "swapw"),
746 Self::SwapW2 => write!(f, "swapw2"),
747 Self::SwapW3 => write!(f, "swapw3"),
748 Self::SwapDW => write!(f, "swapdw"),
749
750 Self::MovUp2 => write!(f, "movup2"),
751 Self::MovUp3 => write!(f, "movup3"),
752 Self::MovUp4 => write!(f, "movup4"),
753 Self::MovUp5 => write!(f, "movup5"),
754 Self::MovUp6 => write!(f, "movup6"),
755 Self::MovUp7 => write!(f, "movup7"),
756 Self::MovUp8 => write!(f, "movup8"),
757
758 Self::MovDn2 => write!(f, "movdn2"),
759 Self::MovDn3 => write!(f, "movdn3"),
760 Self::MovDn4 => write!(f, "movdn4"),
761 Self::MovDn5 => write!(f, "movdn5"),
762 Self::MovDn6 => write!(f, "movdn6"),
763 Self::MovDn7 => write!(f, "movdn7"),
764 Self::MovDn8 => write!(f, "movdn8"),
765
766 Self::CSwap => write!(f, "cswap"),
767 Self::CSwapW => write!(f, "cswapw"),
768
769 // ----- input / output ---------------------------------------------------------------
770 Self::Push(value) => write!(f, "push({value})"),
771
772 Self::AdvPop => write!(f, "advpop"),
773 Self::AdvPopW => write!(f, "advpopw"),
774
775 Self::MLoadW => write!(f, "mloadw"),
776 Self::MStoreW => write!(f, "mstorew"),
777
778 Self::MLoad => write!(f, "mload"),
779 Self::MStore => write!(f, "mstore"),
780
781 Self::MStream => write!(f, "mstream"),
782 Self::Pipe => write!(f, "pipe"),
783
784 Self::Emit => write!(f, "emit"),
785
786 // ----- cryptographic operations -----------------------------------------------------
787 Self::HPerm => write!(f, "hperm"),
788 Self::MpVerify(err_code) => write!(f, "mpverify({err_code})"),
789 Self::MrUpdate => write!(f, "mrupdate"),
790
791 // ----- STARK proof verification -----------------------------------------------------
792 Self::FriE2F4 => write!(f, "frie2f4"),
793 Self::HornerBase => write!(f, "horner_eval_base"),
794 Self::HornerExt => write!(f, "horner_eval_ext"),
795 Self::EvalCircuit => write!(f, "eval_circuit"),
796 }
797 }
798}
799
800impl Serializable for Operation {
801 fn write_into<W: ByteWriter>(&self, target: &mut W) {
802 target.write_u8(self.op_code());
803
804 // For operations that have extra data, encode it in `data`.
805 match self {
806 Operation::Assert(err_code)
807 | Operation::MpVerify(err_code)
808 | Operation::U32assert2(err_code) => {
809 err_code.write_into(target);
810 },
811 Operation::Push(value) => value.as_int().write_into(target),
812
813 // Note: we explicitly write out all the operations so that whenever we make a
814 // modification to the `Operation` enum, we get a compile error here. This
815 // should help us remember to properly encode/decode each operation variant.
816 Operation::Noop
817 | Operation::FmpAdd
818 | Operation::FmpUpdate
819 | Operation::SDepth
820 | Operation::Caller
821 | Operation::Clk
822 | Operation::Join
823 | Operation::Split
824 | Operation::Loop
825 | Operation::Call
826 | Operation::Dyn
827 | Operation::Dyncall
828 | Operation::SysCall
829 | Operation::Span
830 | Operation::End
831 | Operation::Repeat
832 | Operation::Respan
833 | Operation::Halt
834 | Operation::Add
835 | Operation::Neg
836 | Operation::Mul
837 | Operation::Inv
838 | Operation::Incr
839 | Operation::And
840 | Operation::Or
841 | Operation::Not
842 | Operation::Eq
843 | Operation::Eqz
844 | Operation::Expacc
845 | Operation::Ext2Mul
846 | Operation::U32split
847 | Operation::U32add
848 | Operation::U32add3
849 | Operation::U32sub
850 | Operation::U32mul
851 | Operation::U32madd
852 | Operation::U32div
853 | Operation::U32and
854 | Operation::U32xor
855 | Operation::Pad
856 | Operation::Drop
857 | Operation::Dup0
858 | Operation::Dup1
859 | Operation::Dup2
860 | Operation::Dup3
861 | Operation::Dup4
862 | Operation::Dup5
863 | Operation::Dup6
864 | Operation::Dup7
865 | Operation::Dup9
866 | Operation::Dup11
867 | Operation::Dup13
868 | Operation::Dup15
869 | Operation::Swap
870 | Operation::SwapW
871 | Operation::SwapW2
872 | Operation::SwapW3
873 | Operation::SwapDW
874 | Operation::Emit
875 | Operation::MovUp2
876 | Operation::MovUp3
877 | Operation::MovUp4
878 | Operation::MovUp5
879 | Operation::MovUp6
880 | Operation::MovUp7
881 | Operation::MovUp8
882 | Operation::MovDn2
883 | Operation::MovDn3
884 | Operation::MovDn4
885 | Operation::MovDn5
886 | Operation::MovDn6
887 | Operation::MovDn7
888 | Operation::MovDn8
889 | Operation::CSwap
890 | Operation::CSwapW
891 | Operation::AdvPop
892 | Operation::AdvPopW
893 | Operation::MLoadW
894 | Operation::MStoreW
895 | Operation::MLoad
896 | Operation::MStore
897 | Operation::MStream
898 | Operation::Pipe
899 | Operation::HPerm
900 | Operation::MrUpdate
901 | Operation::FriE2F4
902 | Operation::HornerBase
903 | Operation::HornerExt
904 | Operation::EvalCircuit => (),
905 }
906 }
907}
908
909impl Deserializable for Operation {
910 fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
911 let op_code = source.read_u8()?;
912
913 let operation = match op_code {
914 OPCODE_NOOP => Self::Noop,
915 OPCODE_EQZ => Self::Eqz,
916 OPCODE_NEG => Self::Neg,
917 OPCODE_INV => Self::Inv,
918 OPCODE_INCR => Self::Incr,
919 OPCODE_NOT => Self::Not,
920 OPCODE_FMPADD => Self::FmpAdd,
921 OPCODE_MLOAD => Self::MLoad,
922 OPCODE_SWAP => Self::Swap,
923 OPCODE_CALLER => Self::Caller,
924 OPCODE_MOVUP2 => Self::MovUp2,
925 OPCODE_MOVDN2 => Self::MovDn2,
926 OPCODE_MOVUP3 => Self::MovUp3,
927 OPCODE_MOVDN3 => Self::MovDn3,
928 OPCODE_ADVPOPW => Self::AdvPopW,
929 OPCODE_EXPACC => Self::Expacc,
930
931 OPCODE_MOVUP4 => Self::MovUp4,
932 OPCODE_MOVDN4 => Self::MovDn4,
933 OPCODE_MOVUP5 => Self::MovUp5,
934 OPCODE_MOVDN5 => Self::MovDn5,
935 OPCODE_MOVUP6 => Self::MovUp6,
936 OPCODE_MOVDN6 => Self::MovDn6,
937 OPCODE_MOVUP7 => Self::MovUp7,
938 OPCODE_MOVDN7 => Self::MovDn7,
939 OPCODE_SWAPW => Self::SwapW,
940 OPCODE_EXT2MUL => Self::Ext2Mul,
941 OPCODE_MOVUP8 => Self::MovUp8,
942 OPCODE_MOVDN8 => Self::MovDn8,
943 OPCODE_SWAPW2 => Self::SwapW2,
944 OPCODE_SWAPW3 => Self::SwapW3,
945 OPCODE_SWAPDW => Self::SwapDW,
946 OPCODE_EMIT => Self::Emit,
947
948 OPCODE_ASSERT => Self::Assert(Felt::read_from(source)?),
949 OPCODE_EQ => Self::Eq,
950 OPCODE_ADD => Self::Add,
951 OPCODE_MUL => Self::Mul,
952 OPCODE_AND => Self::And,
953 OPCODE_OR => Self::Or,
954 OPCODE_U32AND => Self::U32and,
955 OPCODE_U32XOR => Self::U32xor,
956 OPCODE_FRIE2F4 => Self::FriE2F4,
957 OPCODE_DROP => Self::Drop,
958 OPCODE_CSWAP => Self::CSwap,
959 OPCODE_CSWAPW => Self::CSwapW,
960 OPCODE_MLOADW => Self::MLoadW,
961 OPCODE_MSTORE => Self::MStore,
962 OPCODE_MSTOREW => Self::MStoreW,
963 OPCODE_FMPUPDATE => Self::FmpUpdate,
964
965 OPCODE_PAD => Self::Pad,
966 OPCODE_DUP0 => Self::Dup0,
967 OPCODE_DUP1 => Self::Dup1,
968 OPCODE_DUP2 => Self::Dup2,
969 OPCODE_DUP3 => Self::Dup3,
970 OPCODE_DUP4 => Self::Dup4,
971 OPCODE_DUP5 => Self::Dup5,
972 OPCODE_DUP6 => Self::Dup6,
973 OPCODE_DUP7 => Self::Dup7,
974 OPCODE_DUP9 => Self::Dup9,
975 OPCODE_DUP11 => Self::Dup11,
976 OPCODE_DUP13 => Self::Dup13,
977 OPCODE_DUP15 => Self::Dup15,
978 OPCODE_ADVPOP => Self::AdvPop,
979 OPCODE_SDEPTH => Self::SDepth,
980 OPCODE_CLK => Self::Clk,
981
982 OPCODE_U32ADD => Self::U32add,
983 OPCODE_U32SUB => Self::U32sub,
984 OPCODE_U32MUL => Self::U32mul,
985 OPCODE_U32DIV => Self::U32div,
986 OPCODE_U32SPLIT => Self::U32split,
987 OPCODE_U32ASSERT2 => Self::U32assert2(Felt::read_from(source)?),
988 OPCODE_U32ADD3 => Self::U32add3,
989 OPCODE_U32MADD => Self::U32madd,
990
991 OPCODE_HPERM => Self::HPerm,
992 OPCODE_MPVERIFY => Self::MpVerify(Felt::read_from(source)?),
993 OPCODE_PIPE => Self::Pipe,
994 OPCODE_MSTREAM => Self::MStream,
995 OPCODE_SPLIT => Self::Split,
996 OPCODE_LOOP => Self::Loop,
997 OPCODE_SPAN => Self::Span,
998 OPCODE_JOIN => Self::Join,
999 OPCODE_DYN => Self::Dyn,
1000 OPCODE_DYNCALL => Self::Dyncall,
1001 OPCODE_HORNERBASE => Self::HornerBase,
1002 OPCODE_HORNEREXT => Self::HornerExt,
1003 OPCODE_EVALCIRCUIT => Self::EvalCircuit,
1004
1005 OPCODE_MRUPDATE => Self::MrUpdate,
1006 OPCODE_PUSH => Self::Push(Felt::read_from(source)?),
1007 OPCODE_SYSCALL => Self::SysCall,
1008 OPCODE_CALL => Self::Call,
1009 OPCODE_END => Self::End,
1010 OPCODE_REPEAT => Self::Repeat,
1011 OPCODE_RESPAN => Self::Respan,
1012 OPCODE_HALT => Self::Halt,
1013 _ => {
1014 return Err(DeserializationError::InvalidValue(format!(
1015 "Invalid opcode '{op_code}'"
1016 )));
1017 },
1018 };
1019
1020 Ok(operation)
1021 }
1022}