miden_core/operations/mod.rs
1use core::fmt;
2
3mod decorators;
4pub use decorators::{AssemblyOp, DebugOptions, Decorator, DecoratorIterator, DecoratorList};
5use opcode_constants::*;
6
7use crate::{
8 Felt,
9 utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable},
10};
11
12// OPERATIONS OP CODES
13// ================================================================================================
14
15/// Opcode patterns have the following meanings:
16/// - 00xxxxx operations do not shift the stack; constraint degree can be up to 2.
17/// - 010xxxx operations shift the stack the left; constraint degree can be up to 2.
18/// - 011xxxx operations shift the stack to the right; constraint degree can be up to 2.
19/// - 100xxx-: operations consume 4 range checks; constraint degree can be up to 3. These are used
20/// to encode most u32 operations.
21/// - 101xxx-: operations where constraint degree can be up to 3. These include control flow
22/// operations and some other operations requiring high degree constraints.
23/// - 11xxx--: operations where constraint degree can be up to 5. These include control flow
24/// operations and some other operations requiring very high degree constraints.
25#[rustfmt::skip]
26pub(super) mod opcode_constants {
27 pub const OPCODE_NOOP: u8 = 0b0000_0000;
28 pub const OPCODE_EQZ: u8 = 0b0000_0001;
29 pub const OPCODE_NEG: u8 = 0b0000_0010;
30 pub const OPCODE_INV: u8 = 0b0000_0011;
31 pub const OPCODE_INCR: u8 = 0b0000_0100;
32 pub const OPCODE_NOT: u8 = 0b0000_0101;
33 pub const OPCODE_FMPADD: u8 = 0b0000_0110;
34 pub const OPCODE_MLOAD: u8 = 0b0000_0111;
35 pub const OPCODE_SWAP: u8 = 0b0000_1000;
36 pub const OPCODE_CALLER: u8 = 0b0000_1001;
37 pub const OPCODE_MOVUP2: u8 = 0b0000_1010;
38 pub const OPCODE_MOVDN2: u8 = 0b0000_1011;
39 pub const OPCODE_MOVUP3: u8 = 0b0000_1100;
40 pub const OPCODE_MOVDN3: u8 = 0b0000_1101;
41 pub const OPCODE_ADVPOPW: u8 = 0b0000_1110;
42 pub const OPCODE_EXPACC: u8 = 0b0000_1111;
43
44 pub const OPCODE_MOVUP4: u8 = 0b0001_0000;
45 pub const OPCODE_MOVDN4: u8 = 0b0001_0001;
46 pub const OPCODE_MOVUP5: u8 = 0b0001_0010;
47 pub const OPCODE_MOVDN5: u8 = 0b0001_0011;
48 pub const OPCODE_MOVUP6: u8 = 0b0001_0100;
49 pub const OPCODE_MOVDN6: u8 = 0b0001_0101;
50 pub const OPCODE_MOVUP7: u8 = 0b0001_0110;
51 pub const OPCODE_MOVDN7: u8 = 0b0001_0111;
52 pub const OPCODE_SWAPW: u8 = 0b0001_1000;
53 pub const OPCODE_EXT2MUL: u8 = 0b0001_1001;
54 pub const OPCODE_MOVUP8: u8 = 0b0001_1010;
55 pub const OPCODE_MOVDN8: u8 = 0b0001_1011;
56 pub const OPCODE_SWAPW2: u8 = 0b0001_1100;
57 pub const OPCODE_SWAPW3: u8 = 0b0001_1101;
58 pub const OPCODE_SWAPDW: u8 = 0b0001_1110;
59
60 pub const OPCODE_ASSERT: u8 = 0b0010_0000;
61 pub const OPCODE_EQ: u8 = 0b0010_0001;
62 pub const OPCODE_ADD: u8 = 0b0010_0010;
63 pub const OPCODE_MUL: u8 = 0b0010_0011;
64 pub const OPCODE_AND: u8 = 0b0010_0100;
65 pub const OPCODE_OR: u8 = 0b0010_0101;
66 pub const OPCODE_U32AND: u8 = 0b0010_0110;
67 pub const OPCODE_U32XOR: u8 = 0b0010_0111;
68 pub const OPCODE_FRIE2F4: u8 = 0b0010_1000;
69 pub const OPCODE_DROP: u8 = 0b0010_1001;
70 pub const OPCODE_CSWAP: u8 = 0b0010_1010;
71 pub const OPCODE_CSWAPW: u8 = 0b0010_1011;
72 pub const OPCODE_MLOADW: u8 = 0b0010_1100;
73 pub const OPCODE_MSTORE: u8 = 0b0010_1101;
74 pub const OPCODE_MSTOREW: u8 = 0b0010_1110;
75 pub const OPCODE_FMPUPDATE: u8 = 0b0010_1111;
76
77 pub const OPCODE_PAD: u8 = 0b0011_0000;
78 pub const OPCODE_DUP0: u8 = 0b0011_0001;
79 pub const OPCODE_DUP1: u8 = 0b0011_0010;
80 pub const OPCODE_DUP2: u8 = 0b0011_0011;
81 pub const OPCODE_DUP3: u8 = 0b0011_0100;
82 pub const OPCODE_DUP4: u8 = 0b0011_0101;
83 pub const OPCODE_DUP5: u8 = 0b0011_0110;
84 pub const OPCODE_DUP6: u8 = 0b0011_0111;
85 pub const OPCODE_DUP7: u8 = 0b0011_1000;
86 pub const OPCODE_DUP9: u8 = 0b0011_1001;
87 pub const OPCODE_DUP11: u8 = 0b0011_1010;
88 pub const OPCODE_DUP13: u8 = 0b0011_1011;
89 pub const OPCODE_DUP15: u8 = 0b0011_1100;
90 pub const OPCODE_ADVPOP: u8 = 0b0011_1101;
91 pub const OPCODE_SDEPTH: u8 = 0b0011_1110;
92 pub const OPCODE_CLK: u8 = 0b0011_1111;
93
94 pub const OPCODE_U32ADD: u8 = 0b0100_0000;
95 pub const OPCODE_U32SUB: u8 = 0b0100_0010;
96 pub const OPCODE_U32MUL: u8 = 0b0100_0100;
97 pub const OPCODE_U32DIV: u8 = 0b0100_0110;
98 pub const OPCODE_U32SPLIT: u8 = 0b0100_1000;
99 pub const OPCODE_U32ASSERT2: u8 = 0b0100_1010;
100 pub const OPCODE_U32ADD3: u8 = 0b0100_1100;
101 pub const OPCODE_U32MADD: u8 = 0b0100_1110;
102
103 pub const OPCODE_HPERM: u8 = 0b0101_0000;
104 pub const OPCODE_MPVERIFY: u8 = 0b0101_0001;
105 pub const OPCODE_PIPE: u8 = 0b0101_0010;
106 pub const OPCODE_MSTREAM: u8 = 0b0101_0011;
107 pub const OPCODE_SPLIT: u8 = 0b0101_0100;
108 pub const OPCODE_LOOP: u8 = 0b0101_0101;
109 pub const OPCODE_SPAN: u8 = 0b0101_0110;
110 pub const OPCODE_JOIN: u8 = 0b0101_0111;
111 pub const OPCODE_DYN: u8 = 0b0101_1000;
112 pub const OPCODE_HORNEREXT: u8 = 0b0101_1001;
113 pub const OPCODE_EMIT: u8 = 0b0101_1010;
114 pub const OPCODE_PUSH: u8 = 0b0101_1011;
115 pub const OPCODE_DYNCALL: u8 = 0b0101_1100;
116 pub const OPCODE_EVALCIRCUIT: u8 = 0b0101_1101;
117
118 pub const OPCODE_MRUPDATE: u8 = 0b0110_0000;
119 pub const OPCODE_HORNERBASE: u8 = 0b0110_0100;
120 pub const OPCODE_SYSCALL: u8 = 0b0110_1000;
121 pub const OPCODE_CALL: u8 = 0b0110_1100;
122 pub const OPCODE_END: u8 = 0b0111_0000;
123 pub const OPCODE_REPEAT: u8 = 0b0111_0100;
124 pub const OPCODE_RESPAN: u8 = 0b0111_1000;
125 pub const OPCODE_HALT: u8 = 0b0111_1100;
126}
127
128// OPERATIONS
129// ================================================================================================
130
131/// A set of native VM operations which take exactly one cycle to execute.
132#[derive(Copy, Clone, Debug, Eq, PartialEq)]
133#[repr(u8)]
134pub enum Operation {
135 // ----- system operations -------------------------------------------------------------------
136 /// Advances cycle counter, but does not change the state of user stack.
137 Noop = OPCODE_NOOP,
138
139 /// Pops the stack; if the popped value is not 1, execution fails.
140 ///
141 /// The internal value specifies an error code associated with the error in case when the
142 /// execution fails.
143 Assert(Felt) = OPCODE_ASSERT,
144
145 /// Pops an element off the stack, adds the current value of the `fmp` register to it, and
146 /// pushes the result back onto the stack.
147 FmpAdd = OPCODE_FMPADD,
148
149 /// Pops an element off the stack and adds it to the current value of `fmp` register.
150 FmpUpdate = OPCODE_FMPUPDATE,
151
152 /// Pushes the current depth of the stack onto the stack.
153 SDepth = OPCODE_SDEPTH,
154
155 /// Overwrites the top four stack items with the hash of a function which initiated the current
156 /// SYSCALL. Thus, this operation can be executed only inside a SYSCALL code block.
157 Caller = OPCODE_CALLER,
158
159 /// Pushes the current value of the clock cycle onto the stack. This operation can be used to
160 /// measure the number of cycles it has taken to execute the program up to the current
161 /// instruction.
162 Clk = OPCODE_CLK,
163
164 /// Emits an event id (`u32` value) to the host.
165 ///
166 /// We interpret the event id as follows:
167 /// - 16 most significant bits identify the event source,
168 /// - 16 least significant bits identify the actual event.
169 ///
170 /// Similar to Noop, this operation does not change the state of user stack. The immediate
171 /// value affects the program MAST root computation.
172 Emit(u32) = OPCODE_EMIT,
173
174 // ----- flow control operations -------------------------------------------------------------
175 /// Marks the beginning of a join block.
176 Join = OPCODE_JOIN,
177
178 /// Marks the beginning of a split block.
179 Split = OPCODE_SPLIT,
180
181 /// Marks the beginning of a loop block.
182 Loop = OPCODE_LOOP,
183
184 /// Marks the beginning of a function call.
185 Call = OPCODE_CALL,
186
187 /// Marks the beginning of a dynamic code block, where the target is specified by the stack.
188 Dyn = OPCODE_DYN,
189
190 /// Marks the beginning of a dynamic function call, where the target is specified by the stack.
191 Dyncall = OPCODE_DYNCALL,
192
193 /// Marks the beginning of a kernel call.
194 SysCall = OPCODE_SYSCALL,
195
196 /// Marks the beginning of a span code block.
197 Span = OPCODE_SPAN,
198
199 /// Marks the end of a program block.
200 End = OPCODE_END,
201
202 /// Indicates that body of an executing loop should be executed again.
203 Repeat = OPCODE_REPEAT,
204
205 /// Starts processing a new operation batch.
206 Respan = OPCODE_RESPAN,
207
208 /// Indicates the end of the program. This is used primarily to pad the execution trace to
209 /// the required length. Once HALT operation is executed, no other operations can be executed
210 /// by the VM (HALT operation itself excepted).
211 Halt = OPCODE_HALT,
212
213 // ----- field operations --------------------------------------------------------------------
214 /// Pops two elements off the stack, adds them, and pushes the result back onto the stack.
215 Add = OPCODE_ADD,
216
217 /// Pops an element off the stack, negates it, and pushes the result back onto the stack.
218 Neg = OPCODE_NEG,
219
220 /// Pops two elements off the stack, multiplies them, and pushes the result back onto the
221 /// stack.
222 Mul = OPCODE_MUL,
223
224 /// Pops an element off the stack, computes its multiplicative inverse, and pushes the result
225 /// back onto the stack.
226 Inv = OPCODE_INV,
227
228 /// Pops an element off the stack, adds 1 to it, and pushes the result back onto the stack.
229 Incr = OPCODE_INCR,
230
231 /// Pops two elements off the stack, multiplies them, and pushes the result back onto the
232 /// stack.
233 ///
234 /// If either of the elements is greater than 1, execution fails. This operation is equivalent
235 /// to boolean AND.
236 And = OPCODE_AND,
237
238 /// Pops two elements off the stack and subtracts their product from their sum.
239 ///
240 /// If either of the elements is greater than 1, execution fails. This operation is equivalent
241 /// to boolean OR.
242 Or = OPCODE_OR,
243
244 /// Pops an element off the stack and subtracts it from 1.
245 ///
246 /// If the element is greater than one, the execution fails. This operation is equivalent to
247 /// boolean NOT.
248 Not = OPCODE_NOT,
249
250 /// Pops two elements off the stack and compares them. If the elements are equal, pushes 1
251 /// onto the stack, otherwise pushes 0 onto the stack.
252 Eq = OPCODE_EQ,
253
254 /// Pops an element off the stack and compares it to 0. If the element is 0, pushes 1 onto
255 /// the stack, otherwise pushes 0 onto the stack.
256 Eqz = OPCODE_EQZ,
257
258 /// Computes a single turn of exponent accumulation for the given inputs. This operation can be
259 /// be used to compute a single turn of power of a field element.
260 ///
261 /// The top 4 elements of the stack are expected to be arranged as follows (form the top):
262 /// - least significant bit of the exponent in the previous trace if there's an expacc call,
263 /// otherwise ZERO
264 /// - exponent of base number `a` for this turn
265 /// - accumulated power of base number `a` so far
266 /// - number which needs to be shifted to the right
267 ///
268 /// At the end of the operation, exponent is replaced with its square, current value of power
269 /// of base number `a` on exponent is incorporated into the accumulator and the number is
270 /// shifted to the right by one bit.
271 Expacc = OPCODE_EXPACC,
272
273 // ----- ext2 operations ---------------------------------------------------------------------
274 /// Computes the product of two elements in the extension field of degree 2 and pushes the
275 /// result back onto the stack as the third and fourth elements. Pushes 0 onto the stack as
276 /// the first and second elements.
277 Ext2Mul = OPCODE_EXT2MUL,
278
279 // ----- u32 operations ----------------------------------------------------------------------
280 /// Pops an element off the stack, splits it into upper and lower 32-bit values, and pushes
281 /// these values back onto the stack.
282 U32split = OPCODE_U32SPLIT,
283
284 /// Pops two elements off the stack, adds them, and splits the result into upper and lower
285 /// 32-bit values. Then pushes these values back onto the stack.
286 ///
287 /// If either of these elements is greater than or equal to 2^32, the result of this
288 /// operation is undefined.
289 U32add = OPCODE_U32ADD,
290
291 /// Pops two elements off the stack and checks if each of them represents a 32-bit value.
292 /// If both of them are, they are pushed back onto the stack, otherwise an error is returned.
293 ///
294 /// The internal value specifies an error code associated with the error in case when the
295 /// assertion fails.
296 U32assert2(Felt) = OPCODE_U32ASSERT2,
297
298 /// Pops three elements off the stack, adds them together, and splits the result into upper
299 /// and lower 32-bit values. Then pushes the result back onto the stack.
300 U32add3 = OPCODE_U32ADD3,
301
302 /// Pops two elements off the stack and subtracts the first element from the second. Then,
303 /// the result, together with a flag indicating whether subtraction underflowed is pushed
304 /// onto the stack.
305 ///
306 /// If their of the values is greater than or equal to 2^32, the result of this operation is
307 /// undefined.
308 U32sub = OPCODE_U32SUB,
309
310 /// Pops two elements off the stack, multiplies them, and splits the result into upper and
311 /// lower 32-bit values. Then pushes these values back onto the stack.
312 ///
313 /// If their of the values is greater than or equal to 2^32, the result of this operation is
314 /// undefined.
315 U32mul = OPCODE_U32MUL,
316
317 /// Pops two elements off the stack and multiplies them. Then pops the third element off the
318 /// stack, and adds it to the result. Finally, splits the result into upper and lower 32-bit
319 /// values, and pushes them onto the stack.
320 ///
321 /// If any of the three values is greater than or equal to 2^32, the result of this operation
322 /// is undefined.
323 U32madd = OPCODE_U32MADD,
324
325 /// Pops two elements off the stack and divides the second element by the first. Then pushes
326 /// the integer result of the division, together with the remainder, onto the stack.
327 ///
328 /// If their of the values is greater than or equal to 2^32, the result of this operation is
329 /// undefined.
330 U32div = OPCODE_U32DIV,
331
332 /// Pops two elements off the stack, computes their binary AND, and pushes the result back
333 /// onto the stack.
334 ///
335 /// If either of the elements is greater than or equal to 2^32, execution fails.
336 U32and = OPCODE_U32AND,
337
338 /// Pops two elements off the stack, computes their binary XOR, and pushes the result back
339 /// onto the stack.
340 ///
341 /// If either of the elements is greater than or equal to 2^32, execution fails.
342 U32xor = OPCODE_U32XOR,
343
344 // ----- stack manipulation ------------------------------------------------------------------
345 /// Pushes 0 onto the stack.
346 Pad = OPCODE_PAD,
347
348 /// Removes to element from the stack.
349 Drop = OPCODE_DROP,
350
351 /// Pushes a copy of stack element 0 onto the stack.
352 Dup0 = OPCODE_DUP0,
353
354 /// Pushes a copy of stack element 1 onto the stack.
355 Dup1 = OPCODE_DUP1,
356
357 /// Pushes a copy of stack element 2 onto the stack.
358 Dup2 = OPCODE_DUP2,
359
360 /// Pushes a copy of stack element 3 onto the stack.
361 Dup3 = OPCODE_DUP3,
362
363 /// Pushes a copy of stack element 4 onto the stack.
364 Dup4 = OPCODE_DUP4,
365
366 /// Pushes a copy of stack element 5 onto the stack.
367 Dup5 = OPCODE_DUP5,
368
369 /// Pushes a copy of stack element 6 onto the stack.
370 Dup6 = OPCODE_DUP6,
371
372 /// Pushes a copy of stack element 7 onto the stack.
373 Dup7 = OPCODE_DUP7,
374
375 /// Pushes a copy of stack element 9 onto the stack.
376 Dup9 = OPCODE_DUP9,
377
378 /// Pushes a copy of stack element 11 onto the stack.
379 Dup11 = OPCODE_DUP11,
380
381 /// Pushes a copy of stack element 13 onto the stack.
382 Dup13 = OPCODE_DUP13,
383
384 /// Pushes a copy of stack element 15 onto the stack.
385 Dup15 = OPCODE_DUP15,
386
387 /// Swaps stack elements 0 and 1.
388 Swap = OPCODE_SWAP,
389
390 /// Swaps stack elements 0, 1, 2, and 3 with elements 4, 5, 6, and 7.
391 SwapW = OPCODE_SWAPW,
392
393 /// Swaps stack elements 0, 1, 2, and 3 with elements 8, 9, 10, and 11.
394 SwapW2 = OPCODE_SWAPW2,
395
396 /// Swaps stack elements 0, 1, 2, and 3, with elements 12, 13, 14, and 15.
397 SwapW3 = OPCODE_SWAPW3,
398
399 /// Swaps the top two words pair wise.
400 ///
401 /// Input: [D, C, B, A, ...]
402 /// Output: [B, A, D, C, ...]
403 SwapDW = OPCODE_SWAPDW,
404
405 /// Moves stack element 2 to the top of the stack.
406 MovUp2 = OPCODE_MOVUP2,
407
408 /// Moves stack element 3 to the top of the stack.
409 MovUp3 = OPCODE_MOVUP3,
410
411 /// Moves stack element 4 to the top of the stack.
412 MovUp4 = OPCODE_MOVUP4,
413
414 /// Moves stack element 5 to the top of the stack.
415 MovUp5 = OPCODE_MOVUP5,
416
417 /// Moves stack element 6 to the top of the stack.
418 MovUp6 = OPCODE_MOVUP6,
419
420 /// Moves stack element 7 to the top of the stack.
421 MovUp7 = OPCODE_MOVUP7,
422
423 /// Moves stack element 8 to the top of the stack.
424 MovUp8 = OPCODE_MOVUP8,
425
426 /// Moves the top stack element to position 2 on the stack.
427 MovDn2 = OPCODE_MOVDN2,
428
429 /// Moves the top stack element to position 3 on the stack.
430 MovDn3 = OPCODE_MOVDN3,
431
432 /// Moves the top stack element to position 4 on the stack.
433 MovDn4 = OPCODE_MOVDN4,
434
435 /// Moves the top stack element to position 5 on the stack.
436 MovDn5 = OPCODE_MOVDN5,
437
438 /// Moves the top stack element to position 6 on the stack.
439 MovDn6 = OPCODE_MOVDN6,
440
441 /// Moves the top stack element to position 7 on the stack.
442 MovDn7 = OPCODE_MOVDN7,
443
444 /// Moves the top stack element to position 8 on the stack.
445 MovDn8 = OPCODE_MOVDN8,
446
447 /// Pops an element off the stack, and if the element is 1, swaps the top two remaining
448 /// elements on the stack. If the popped element is 0, the stack remains unchanged.
449 ///
450 /// If the popped element is neither 0 nor 1, execution fails.
451 CSwap = OPCODE_CSWAP,
452
453 /// Pops an element off the stack, and if the element is 1, swaps the remaining elements
454 /// 0, 1, 2, and 3 with elements 4, 5, 6, and 7. If the popped element is 0, the stack
455 /// remains unchanged.
456 ///
457 /// If the popped element is neither 0 nor 1, execution fails.
458 CSwapW = OPCODE_CSWAPW,
459
460 // ----- input / output ----------------------------------------------------------------------
461 /// Pushes the immediate value onto the stack.
462 Push(Felt) = OPCODE_PUSH,
463
464 /// Removes the next element from the advice stack and pushes it onto the operand stack.
465 AdvPop = OPCODE_ADVPOP,
466
467 /// Removes a word (4 elements) from the advice stack and overwrites the top four operand
468 /// stack elements with it.
469 AdvPopW = OPCODE_ADVPOPW,
470
471 /// Pops an element off the stack, interprets it as a memory address, and replaces the
472 /// remaining 4 elements at the top of the stack with values located at the specified address.
473 MLoadW = OPCODE_MLOADW,
474
475 /// Pops an element off the stack, interprets it as a memory address, and writes the remaining
476 /// 4 elements at the top of the stack into memory at the specified address.
477 MStoreW = OPCODE_MSTOREW,
478
479 /// Pops an element off the stack, interprets it as a memory address, and pushes the first
480 /// element of the word located at the specified address to the stack.
481 MLoad = OPCODE_MLOAD,
482
483 /// Pops an element off the stack, interprets it as a memory address, and writes the remaining
484 /// element at the top of the stack into the first element of the word located at the specified
485 /// memory address. The remaining 3 elements of the word are not affected.
486 MStore = OPCODE_MSTORE,
487
488 /// Loads two words from memory, and replaces the top 8 elements of the stack with them,
489 /// element-wise, in stack order.
490 ///
491 /// The operation works as follows:
492 /// - The memory address of the first word is retrieved from 13th stack element (position 12).
493 /// - Two consecutive words, starting at this address, are loaded from memory.
494 /// - The top 8 elements of the stack are overwritten with these words (element-wise, in stack
495 /// order).
496 /// - Memory address (in position 12) is incremented by 2.
497 /// - All other stack elements remain the same.
498 MStream = OPCODE_MSTREAM,
499
500 /// Pops two words from the advice stack, writes them to memory, and replaces the top 8
501 /// elements of the stack with them, element-wise, in stack order.
502 ///
503 /// The operation works as follows:
504 /// - Two words are popped from the advice stack.
505 /// - The destination memory address for the first word is retrieved from the 13th stack element
506 /// (position 12).
507 /// - The two words are written to memory consecutively, starting at this address.
508 /// - The top 8 elements of the stack are overwritten with these words (element-wise, in stack
509 /// order).
510 /// - Memory address (in position 12) is incremented by 2.
511 /// - All other stack elements remain the same.
512 Pipe = OPCODE_PIPE,
513
514 // ----- cryptographic operations ------------------------------------------------------------
515 /// Performs a Rescue Prime Optimized permutation on the top 3 words of the operand stack,
516 /// where the top 2 words are the rate (words C and B), the deepest word is the capacity (word
517 /// A), and the digest output is the middle word E.
518 ///
519 /// Stack transition:
520 /// [C, B, A, ...] -> [F, E, D, ...]
521 HPerm = OPCODE_HPERM,
522
523 /// Verifies that a Merkle path from the specified node resolves to the specified root. This
524 /// operation can be used to prove that the prover knows a path in the specified Merkle tree
525 /// which starts with the specified node.
526 ///
527 /// The stack is expected to be arranged as follows (from the top):
528 /// - value of the node, 4 elements.
529 /// - depth of the path, 1 element.
530 /// - index of the node, 1 element.
531 /// - root of the tree, 4 elements.
532 ///
533 /// The Merkle path itself is expected to be provided by the prover non-deterministically (via
534 /// merkle sets). If the prover is not able to provide the required path, the operation fails.
535 /// The state of the stack does not change.
536 ///
537 /// The internal value specifies an error code associated with the error in case when the
538 /// assertion fails.
539 MpVerify(Felt) = OPCODE_MPVERIFY,
540
541 /// Computes a new root of a Merkle tree where a node at the specified position is updated to
542 /// the specified value.
543 ///
544 /// The stack is expected to be arranged as follows (from the top):
545 /// - old value of the node, 4 element
546 /// - depth of the node, 1 element
547 /// - index of the node, 1 element
548 /// - current root of the tree, 4 elements
549 /// - new value of the node, 4 element
550 ///
551 /// The Merkle path for the node is expected to be provided by the prover non-deterministically
552 /// via the advice provider. At the end of the operation, the old node value is replaced with
553 /// the new root value, that is computed based on the provided path. Everything else on the
554 /// stack remains the same.
555 ///
556 /// The tree will always be copied into a new instance, meaning the advice provider will keep
557 /// track of both the old and new Merkle trees.
558 MrUpdate = OPCODE_MRUPDATE,
559
560 /// Performs FRI (Fast Reed-Solomon Interactive Oracle Proofs) layer folding by a factor of 4
561 /// for FRI protocol executed in a degree 2 extension of the base field.
562 ///
563 /// This operation:
564 /// - Folds 4 query values (v0, v1), (v2, v3), (v4, v5), (v6, v7) into a single value (ne0, ne1)
565 /// - Computes new value of the domain generator power: poe' = poe^4
566 /// - Increments layer pointer (cptr) by 2
567 /// - Checks that the previous folding was done correctly
568 /// - Shifts the stack to move an item from the overflow table to stack position 15
569 ///
570 /// Stack transition:
571 /// Input: [v7, v6, v5, v4, v3, v2, v1, v0, f_pos, d_seg, poe, pe1, pe0, a1, a0, cptr, ...]
572 /// Output: [t1, t0, s1, s0, df3, df2, df1, df0, poe^2, f_tau, cptr+2, poe^4, f_pos, ne1, ne0,
573 /// eptr, ...] where eptr is moved from the stack overflow table and is the address of the
574 /// final FRI layer.
575 FriE2F4 = OPCODE_FRIE2F4,
576
577 /// Performs 8 steps of the Horner evaluation method on a polynomial with coefficients over
578 /// the base field, i.e., it computes
579 ///
580 /// acc' = (((acc_tmp * alpha + c3) * alpha + c2) * alpha + c1) * alpha + c0
581 ///
582 /// where
583 ///
584 /// acc_tmp := (((acc * alpha + c7) * alpha + c6) * alpha + c5) * alpha + c4
585 ///
586 ///
587 /// In other words, the intsruction computes the evaluation at alpha of the polynomial
588 ///
589 /// P(X) := c7 * X^7 + c6 * X^6 + ... + c1 * X + c0
590 HornerBase = OPCODE_HORNERBASE,
591
592 /// Performs 4 steps of the Horner evaluation method on a polynomial with coefficients over
593 /// the extension field, i.e., it computes
594 ///
595 /// acc' = (((acc * alpha + c3) * alpha + c2) * alpha + c1) * alpha + c0
596 ///
597 /// In other words, the intsruction computes the evaluation at alpha of the polynomial
598 ///
599 /// P(X) := c3 * X^3 + c2 * X^2 + c1 * X + c0
600 HornerExt = OPCODE_HORNEREXT,
601
602 /// Evaluates an arithmetic circuit given a pointer to its description in memory, the number
603 /// of arithmetic gates, and the sum of the input and constant gates.
604 EvalCircuit = OPCODE_EVALCIRCUIT,
605}
606
607impl Operation {
608 pub const OP_BITS: usize = 7;
609
610 /// Returns the opcode of this operation.
611 #[rustfmt::skip]
612 pub fn op_code(&self) -> u8 {
613 // SAFETY: This is safe because we have given this enum a primitive representation with
614 // #[repr(u8)], with the first field of the underlying union-of-structs the discriminant.
615 //
616 // See the section on "accessing the numeric value of the discriminant"
617 // here: https://doc.rust-lang.org/std/mem/fn.discriminant.html
618 unsafe { *<*const _>::from(self).cast::<u8>() }
619 }
620
621 /// Returns an immediate value carried by this operation.
622 pub fn imm_value(&self) -> Option<Felt> {
623 match *self {
624 Self::Push(imm) => Some(imm),
625 Self::Emit(imm) => Some(imm.into()),
626 _ => None,
627 }
628 }
629
630 /// Returns true if this operation writes any data to the decoder hasher registers.
631 ///
632 /// In other words, if so, then the user op helper registers are not available.
633 pub fn populates_decoder_hasher_registers(&self) -> bool {
634 matches!(
635 self,
636 Self::End
637 | Self::Join
638 | Self::Split
639 | Self::Loop
640 | Self::Repeat
641 | Self::Respan
642 | Self::Span
643 | Self::Halt
644 | Self::Call
645 | Self::SysCall
646 )
647 }
648}
649
650impl crate::prettier::PrettyPrint for Operation {
651 fn render(&self) -> crate::prettier::Document {
652 crate::prettier::display(self)
653 }
654}
655
656impl fmt::Display for Operation {
657 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
658 match self {
659 // ----- system operations ------------------------------------------------------------
660 Self::Noop => write!(f, "noop"),
661 Self::Assert(err_code) => write!(f, "assert({err_code})"),
662
663 Self::FmpAdd => write!(f, "fmpadd"),
664 Self::FmpUpdate => write!(f, "fmpupdate"),
665
666 Self::SDepth => write!(f, "sdepth"),
667 Self::Caller => write!(f, "caller"),
668
669 Self::Clk => write!(f, "clk"),
670
671 // ----- flow control operations ------------------------------------------------------
672 Self::Join => write!(f, "join"),
673 Self::Split => write!(f, "split"),
674 Self::Loop => write!(f, "loop"),
675 Self::Call => writeln!(f, "call"),
676 Self::Dyncall => writeln!(f, "dyncall"),
677 Self::SysCall => writeln!(f, "syscall"),
678 Self::Dyn => writeln!(f, "dyn"),
679 Self::Span => write!(f, "span"),
680 Self::End => write!(f, "end"),
681 Self::Repeat => write!(f, "repeat"),
682 Self::Respan => write!(f, "respan"),
683 Self::Halt => write!(f, "halt"),
684
685 // ----- field operations -------------------------------------------------------------
686 Self::Add => write!(f, "add"),
687 Self::Neg => write!(f, "neg"),
688 Self::Mul => write!(f, "mul"),
689 Self::Inv => write!(f, "inv"),
690 Self::Incr => write!(f, "incr"),
691
692 Self::And => write!(f, "and"),
693 Self::Or => write!(f, "or"),
694 Self::Not => write!(f, "not"),
695
696 Self::Eq => write!(f, "eq"),
697 Self::Eqz => write!(f, "eqz"),
698
699 Self::Expacc => write!(f, "expacc"),
700
701 // ----- ext2 operations --------------------------------------------------------------
702 Self::Ext2Mul => write!(f, "ext2mul"),
703
704 // ----- u32 operations ---------------------------------------------------------------
705 Self::U32assert2(err_code) => write!(f, "u32assert2({err_code})"),
706 Self::U32split => write!(f, "u32split"),
707 Self::U32add => write!(f, "u32add"),
708 Self::U32add3 => write!(f, "u32add3"),
709 Self::U32sub => write!(f, "u32sub"),
710 Self::U32mul => write!(f, "u32mul"),
711 Self::U32madd => write!(f, "u32madd"),
712 Self::U32div => write!(f, "u32div"),
713
714 Self::U32and => write!(f, "u32and"),
715 Self::U32xor => write!(f, "u32xor"),
716
717 // ----- stack manipulation -----------------------------------------------------------
718 Self::Drop => write!(f, "drop"),
719 Self::Pad => write!(f, "pad"),
720
721 Self::Dup0 => write!(f, "dup0"),
722 Self::Dup1 => write!(f, "dup1"),
723 Self::Dup2 => write!(f, "dup2"),
724 Self::Dup3 => write!(f, "dup3"),
725 Self::Dup4 => write!(f, "dup4"),
726 Self::Dup5 => write!(f, "dup5"),
727 Self::Dup6 => write!(f, "dup6"),
728 Self::Dup7 => write!(f, "dup7"),
729 Self::Dup9 => write!(f, "dup9"),
730 Self::Dup11 => write!(f, "dup11"),
731 Self::Dup13 => write!(f, "dup13"),
732 Self::Dup15 => write!(f, "dup15"),
733
734 Self::Swap => write!(f, "swap"),
735 Self::SwapW => write!(f, "swapw"),
736 Self::SwapW2 => write!(f, "swapw2"),
737 Self::SwapW3 => write!(f, "swapw3"),
738 Self::SwapDW => write!(f, "swapdw"),
739
740 Self::MovUp2 => write!(f, "movup2"),
741 Self::MovUp3 => write!(f, "movup3"),
742 Self::MovUp4 => write!(f, "movup4"),
743 Self::MovUp5 => write!(f, "movup5"),
744 Self::MovUp6 => write!(f, "movup6"),
745 Self::MovUp7 => write!(f, "movup7"),
746 Self::MovUp8 => write!(f, "movup8"),
747
748 Self::MovDn2 => write!(f, "movdn2"),
749 Self::MovDn3 => write!(f, "movdn3"),
750 Self::MovDn4 => write!(f, "movdn4"),
751 Self::MovDn5 => write!(f, "movdn5"),
752 Self::MovDn6 => write!(f, "movdn6"),
753 Self::MovDn7 => write!(f, "movdn7"),
754 Self::MovDn8 => write!(f, "movdn8"),
755
756 Self::CSwap => write!(f, "cswap"),
757 Self::CSwapW => write!(f, "cswapw"),
758
759 // ----- input / output ---------------------------------------------------------------
760 Self::Push(value) => write!(f, "push({value})"),
761
762 Self::AdvPop => write!(f, "advpop"),
763 Self::AdvPopW => write!(f, "advpopw"),
764
765 Self::MLoadW => write!(f, "mloadw"),
766 Self::MStoreW => write!(f, "mstorew"),
767
768 Self::MLoad => write!(f, "mload"),
769 Self::MStore => write!(f, "mstore"),
770
771 Self::MStream => write!(f, "mstream"),
772 Self::Pipe => write!(f, "pipe"),
773
774 Self::Emit(value) => write!(f, "emit({value})"),
775
776 // ----- cryptographic operations -----------------------------------------------------
777 Self::HPerm => write!(f, "hperm"),
778 Self::MpVerify(err_code) => write!(f, "mpverify({err_code})"),
779 Self::MrUpdate => write!(f, "mrupdate"),
780
781 // ----- STARK proof verification -----------------------------------------------------
782 Self::FriE2F4 => write!(f, "frie2f4"),
783 Self::HornerBase => write!(f, "horner_eval_base"),
784 Self::HornerExt => write!(f, "horner_eval_ext"),
785 Self::EvalCircuit => write!(f, "eval_circuit"),
786 }
787 }
788}
789
790impl Serializable for Operation {
791 fn write_into<W: ByteWriter>(&self, target: &mut W) {
792 target.write_u8(self.op_code());
793
794 // For operations that have extra data, encode it in `data`.
795 match self {
796 Operation::Assert(err_code)
797 | Operation::MpVerify(err_code)
798 | Operation::U32assert2(err_code) => {
799 err_code.write_into(target);
800 },
801 Operation::Push(value) => value.as_int().write_into(target),
802 Operation::Emit(value) => value.write_into(target),
803
804 // Note: we explicitly write out all the operations so that whenever we make a
805 // modification to the `Operation` enum, we get a compile error here. This
806 // should help us remember to properly encode/decode each operation variant.
807 Operation::Noop
808 | Operation::FmpAdd
809 | Operation::FmpUpdate
810 | Operation::SDepth
811 | Operation::Caller
812 | Operation::Clk
813 | Operation::Join
814 | Operation::Split
815 | Operation::Loop
816 | Operation::Call
817 | Operation::Dyn
818 | Operation::Dyncall
819 | Operation::SysCall
820 | Operation::Span
821 | Operation::End
822 | Operation::Repeat
823 | Operation::Respan
824 | Operation::Halt
825 | Operation::Add
826 | Operation::Neg
827 | Operation::Mul
828 | Operation::Inv
829 | Operation::Incr
830 | Operation::And
831 | Operation::Or
832 | Operation::Not
833 | Operation::Eq
834 | Operation::Eqz
835 | Operation::Expacc
836 | Operation::Ext2Mul
837 | Operation::U32split
838 | Operation::U32add
839 | Operation::U32add3
840 | Operation::U32sub
841 | Operation::U32mul
842 | Operation::U32madd
843 | Operation::U32div
844 | Operation::U32and
845 | Operation::U32xor
846 | Operation::Pad
847 | Operation::Drop
848 | Operation::Dup0
849 | Operation::Dup1
850 | Operation::Dup2
851 | Operation::Dup3
852 | Operation::Dup4
853 | Operation::Dup5
854 | Operation::Dup6
855 | Operation::Dup7
856 | Operation::Dup9
857 | Operation::Dup11
858 | Operation::Dup13
859 | Operation::Dup15
860 | Operation::Swap
861 | Operation::SwapW
862 | Operation::SwapW2
863 | Operation::SwapW3
864 | Operation::SwapDW
865 | Operation::MovUp2
866 | Operation::MovUp3
867 | Operation::MovUp4
868 | Operation::MovUp5
869 | Operation::MovUp6
870 | Operation::MovUp7
871 | Operation::MovUp8
872 | Operation::MovDn2
873 | Operation::MovDn3
874 | Operation::MovDn4
875 | Operation::MovDn5
876 | Operation::MovDn6
877 | Operation::MovDn7
878 | Operation::MovDn8
879 | Operation::CSwap
880 | Operation::CSwapW
881 | Operation::AdvPop
882 | Operation::AdvPopW
883 | Operation::MLoadW
884 | Operation::MStoreW
885 | Operation::MLoad
886 | Operation::MStore
887 | Operation::MStream
888 | Operation::Pipe
889 | Operation::HPerm
890 | Operation::MrUpdate
891 | Operation::FriE2F4
892 | Operation::HornerBase
893 | Operation::HornerExt
894 | Operation::EvalCircuit => (),
895 }
896 }
897}
898
899impl Deserializable for Operation {
900 fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
901 let op_code = source.read_u8()?;
902
903 let operation = match op_code {
904 OPCODE_NOOP => Self::Noop,
905 OPCODE_EQZ => Self::Eqz,
906 OPCODE_NEG => Self::Neg,
907 OPCODE_INV => Self::Inv,
908 OPCODE_INCR => Self::Incr,
909 OPCODE_NOT => Self::Not,
910 OPCODE_FMPADD => Self::FmpAdd,
911 OPCODE_MLOAD => Self::MLoad,
912 OPCODE_SWAP => Self::Swap,
913 OPCODE_CALLER => Self::Caller,
914 OPCODE_MOVUP2 => Self::MovUp2,
915 OPCODE_MOVDN2 => Self::MovDn2,
916 OPCODE_MOVUP3 => Self::MovUp3,
917 OPCODE_MOVDN3 => Self::MovDn3,
918 OPCODE_ADVPOPW => Self::AdvPopW,
919 OPCODE_EXPACC => Self::Expacc,
920
921 OPCODE_MOVUP4 => Self::MovUp4,
922 OPCODE_MOVDN4 => Self::MovDn4,
923 OPCODE_MOVUP5 => Self::MovUp5,
924 OPCODE_MOVDN5 => Self::MovDn5,
925 OPCODE_MOVUP6 => Self::MovUp6,
926 OPCODE_MOVDN6 => Self::MovDn6,
927 OPCODE_MOVUP7 => Self::MovUp7,
928 OPCODE_MOVDN7 => Self::MovDn7,
929 OPCODE_SWAPW => Self::SwapW,
930 OPCODE_EXT2MUL => Self::Ext2Mul,
931 OPCODE_MOVUP8 => Self::MovUp8,
932 OPCODE_MOVDN8 => Self::MovDn8,
933 OPCODE_SWAPW2 => Self::SwapW2,
934 OPCODE_SWAPW3 => Self::SwapW3,
935 OPCODE_SWAPDW => Self::SwapDW,
936
937 OPCODE_ASSERT => Self::Assert(Felt::read_from(source)?),
938 OPCODE_EQ => Self::Eq,
939 OPCODE_ADD => Self::Add,
940 OPCODE_MUL => Self::Mul,
941 OPCODE_AND => Self::And,
942 OPCODE_OR => Self::Or,
943 OPCODE_U32AND => Self::U32and,
944 OPCODE_U32XOR => Self::U32xor,
945 OPCODE_FRIE2F4 => Self::FriE2F4,
946 OPCODE_DROP => Self::Drop,
947 OPCODE_CSWAP => Self::CSwap,
948 OPCODE_CSWAPW => Self::CSwapW,
949 OPCODE_MLOADW => Self::MLoadW,
950 OPCODE_MSTORE => Self::MStore,
951 OPCODE_MSTOREW => Self::MStoreW,
952 OPCODE_FMPUPDATE => Self::FmpUpdate,
953
954 OPCODE_PAD => Self::Pad,
955 OPCODE_DUP0 => Self::Dup0,
956 OPCODE_DUP1 => Self::Dup1,
957 OPCODE_DUP2 => Self::Dup2,
958 OPCODE_DUP3 => Self::Dup3,
959 OPCODE_DUP4 => Self::Dup4,
960 OPCODE_DUP5 => Self::Dup5,
961 OPCODE_DUP6 => Self::Dup6,
962 OPCODE_DUP7 => Self::Dup7,
963 OPCODE_DUP9 => Self::Dup9,
964 OPCODE_DUP11 => Self::Dup11,
965 OPCODE_DUP13 => Self::Dup13,
966 OPCODE_DUP15 => Self::Dup15,
967 OPCODE_ADVPOP => Self::AdvPop,
968 OPCODE_SDEPTH => Self::SDepth,
969 OPCODE_CLK => Self::Clk,
970
971 OPCODE_U32ADD => Self::U32add,
972 OPCODE_U32SUB => Self::U32sub,
973 OPCODE_U32MUL => Self::U32mul,
974 OPCODE_U32DIV => Self::U32div,
975 OPCODE_U32SPLIT => Self::U32split,
976 OPCODE_U32ASSERT2 => Self::U32assert2(Felt::read_from(source)?),
977 OPCODE_U32ADD3 => Self::U32add3,
978 OPCODE_U32MADD => Self::U32madd,
979
980 OPCODE_HPERM => Self::HPerm,
981 OPCODE_MPVERIFY => Self::MpVerify(Felt::read_from(source)?),
982 OPCODE_PIPE => Self::Pipe,
983 OPCODE_MSTREAM => Self::MStream,
984 OPCODE_SPLIT => Self::Split,
985 OPCODE_LOOP => Self::Loop,
986 OPCODE_SPAN => Self::Span,
987 OPCODE_JOIN => Self::Join,
988 OPCODE_DYN => Self::Dyn,
989 OPCODE_DYNCALL => Self::Dyncall,
990 OPCODE_HORNERBASE => Self::HornerBase,
991 OPCODE_HORNEREXT => Self::HornerExt,
992 OPCODE_EVALCIRCUIT => Self::EvalCircuit,
993
994 OPCODE_MRUPDATE => Self::MrUpdate,
995 OPCODE_PUSH => Self::Push(Felt::read_from(source)?),
996 OPCODE_EMIT => {
997 let value = source.read_u32()?;
998
999 Self::Emit(value)
1000 },
1001 OPCODE_SYSCALL => Self::SysCall,
1002 OPCODE_CALL => Self::Call,
1003 OPCODE_END => Self::End,
1004 OPCODE_REPEAT => Self::Repeat,
1005 OPCODE_RESPAN => Self::Respan,
1006 OPCODE_HALT => Self::Halt,
1007 _ => {
1008 return Err(DeserializationError::InvalidValue(format!(
1009 "Invalid opcode '{op_code}'"
1010 )));
1011 },
1012 };
1013
1014 Ok(operation)
1015 }
1016}