miden_core/mast/merger/mod.rs
1use alloc::{collections::BTreeMap, vec::Vec};
2
3use miden_crypto::{hash::blake::Blake3Digest, utils::collections::KvMap};
4
5use crate::mast::{
6 DecoratorId, MastForest, MastForestError, MastNode, MastNodeFingerprint, MastNodeId,
7 MultiMastForestIteratorItem, MultiMastForestNodeIter,
8};
9
10#[cfg(test)]
11mod tests;
12
13/// A type that allows merging [`MastForest`]s.
14///
15/// This functionality is exposed via [`MastForest::merge`]. See its documentation for more details.
16pub(crate) struct MastForestMerger {
17 mast_forest: MastForest,
18 // Internal indices needed for efficient duplicate checking and MastNodeFingerprint
19 // computation.
20 //
21 // These are always in-sync with the nodes in `mast_forest`, i.e. all nodes added to the
22 // `mast_forest` are also added to the indices.
23 node_id_by_hash: BTreeMap<MastNodeFingerprint, MastNodeId>,
24 hash_by_node_id: BTreeMap<MastNodeId, MastNodeFingerprint>,
25 decorators_by_hash: BTreeMap<Blake3Digest<32>, DecoratorId>,
26 /// Mappings from old decorator and node ids to their new ids.
27 ///
28 /// Any decorator in `mast_forest` is present as the target of some mapping in this map.
29 decorator_id_mappings: Vec<DecoratorIdMap>,
30 /// Mappings from previous `MastNodeId`s to their new ids.
31 ///
32 /// Any `MastNodeId` in `mast_forest` is present as the target of some mapping in this map.
33 node_id_mappings: Vec<MastForestNodeIdMap>,
34}
35
36impl MastForestMerger {
37 /// Creates a new merger with an initially empty forest and merges all provided [`MastForest`]s
38 /// into it.
39 pub(crate) fn merge<'forest>(
40 forests: impl IntoIterator<Item = &'forest MastForest>,
41 ) -> Result<(MastForest, MastForestRootMap), MastForestError> {
42 let forests = forests.into_iter().collect::<Vec<_>>();
43 let decorator_id_mappings = Vec::with_capacity(forests.len());
44 let node_id_mappings = vec![MastForestNodeIdMap::new(); forests.len()];
45
46 let mut merger = Self {
47 node_id_by_hash: BTreeMap::new(),
48 hash_by_node_id: BTreeMap::new(),
49 decorators_by_hash: BTreeMap::new(),
50 mast_forest: MastForest::new(),
51 decorator_id_mappings,
52 node_id_mappings,
53 };
54
55 merger.merge_inner(forests.clone())?;
56
57 let Self { mast_forest, node_id_mappings, .. } = merger;
58
59 let root_maps = MastForestRootMap::from_node_id_map(node_id_mappings, forests);
60
61 Ok((mast_forest, root_maps))
62 }
63
64 /// Merges all `forests` into self.
65 ///
66 /// It does this in three steps:
67 ///
68 /// 1. Merge all advice maps, checking for key collisions.
69 /// 2. Merge all decorators, which is a case of deduplication and creating a decorator id
70 /// mapping which contains how existing [`DecoratorId`]s map to [`DecoratorId`]s in the
71 /// merged forest.
72 /// 3. Merge all nodes of forests.
73 /// - Similar to decorators, node indices might move during merging, so the merger keeps a
74 /// node id mapping as it merges nodes.
75 /// - This is a depth-first traversal over all forests to ensure all children are processed
76 /// before their parents. See the documentation of [`MultiMastForestNodeIter`] for details
77 /// on this traversal.
78 /// - Because all parents are processed after their children, we can use the node id mapping
79 /// to remap all [`MastNodeId`]s of the children to their potentially new id in the merged
80 /// forest.
81 /// - If any external node is encountered during this traversal with a digest `foo` for which
82 /// a `replacement` node exists in another forest with digest `foo`, then the external node
83 /// will be replaced by that node. In particular, it means we do not want to add the
84 /// external node to the merged forest, so it is never yielded from the iterator.
85 /// - Assuming the simple case, where the `replacement` was not visited yet and is just a
86 /// single node (not a tree), the iterator would first yield the `replacement` node which
87 /// means it is going to be merged into the forest.
88 /// - Next the iterator yields [`MultiMastForestIteratorItem::ExternalNodeReplacement`]
89 /// which signals that an external node was replaced by another node. In this example,
90 /// the `replacement_*` indices contained in that variant would point to the
91 /// `replacement` node. Now we can simply add a mapping from the external node to the
92 /// `replacement` node in our node id mapping which means all nodes that referenced the
93 /// external node will point to the `replacement` instead.
94 /// 4. Finally, we merge all roots of all forests. Here we map the existing root indices to
95 /// their potentially new indices in the merged forest and add them to the forest,
96 /// deduplicating in the process, too.
97 fn merge_inner(&mut self, forests: Vec<&MastForest>) -> Result<(), MastForestError> {
98 for other_forest in forests.iter() {
99 self.merge_advice_map(other_forest)?;
100 }
101 for other_forest in forests.iter() {
102 self.merge_decorators(other_forest)?;
103 }
104 for other_forest in forests.iter() {
105 self.merge_error_codes(other_forest)?;
106 }
107
108 let iterator = MultiMastForestNodeIter::new(forests.clone());
109 for item in iterator {
110 match item {
111 MultiMastForestIteratorItem::Node { forest_idx, node_id } => {
112 let node = &forests[forest_idx][node_id];
113 self.merge_node(forest_idx, node_id, node)?;
114 },
115 MultiMastForestIteratorItem::ExternalNodeReplacement {
116 // forest index of the node which replaces the external node
117 replacement_forest_idx,
118 // ID of the node that replaces the external node
119 replacement_mast_node_id,
120 // forest index of the external node
121 replaced_forest_idx,
122 // ID of the external node
123 replaced_mast_node_id,
124 } => {
125 // The iterator is not aware of the merged forest, so the node indices it yields
126 // are for the existing forests. That means we have to map the ID of the
127 // replacement to its new location, since it was previously merged and its IDs
128 // have very likely changed.
129 let mapped_replacement = self.node_id_mappings[replacement_forest_idx]
130 .get(&replacement_mast_node_id)
131 .copied()
132 .expect("every merged node id should be mapped");
133
134 // SAFETY: The iterator only yields valid forest indices, so it is safe to index
135 // directly.
136 self.node_id_mappings[replaced_forest_idx]
137 .insert(replaced_mast_node_id, mapped_replacement);
138 },
139 }
140 }
141
142 for (forest_idx, forest) in forests.iter().enumerate() {
143 self.merge_roots(forest_idx, forest)?;
144 }
145
146 Ok(())
147 }
148
149 fn merge_decorators(&mut self, other_forest: &MastForest) -> Result<(), MastForestError> {
150 let mut decorator_id_remapping = DecoratorIdMap::new(other_forest.decorators.len());
151
152 for (merging_id, merging_decorator) in other_forest.decorators.iter().enumerate() {
153 let merging_decorator_hash = merging_decorator.fingerprint();
154 let new_decorator_id = if let Some(existing_decorator) =
155 self.decorators_by_hash.get(&merging_decorator_hash)
156 {
157 *existing_decorator
158 } else {
159 let new_decorator_id = self.mast_forest.add_decorator(merging_decorator.clone())?;
160 self.decorators_by_hash.insert(merging_decorator_hash, new_decorator_id);
161 new_decorator_id
162 };
163
164 decorator_id_remapping
165 .insert(DecoratorId::new_unchecked(merging_id as u32), new_decorator_id);
166 }
167
168 self.decorator_id_mappings.push(decorator_id_remapping);
169
170 Ok(())
171 }
172
173 fn merge_advice_map(&mut self, other_forest: &MastForest) -> Result<(), MastForestError> {
174 for (digest, values) in other_forest.advice_map.iter() {
175 if let Some(stored_values) = self.mast_forest.advice_map().get(digest) {
176 if stored_values != values {
177 return Err(MastForestError::AdviceMapKeyCollisionOnMerge(*digest));
178 }
179 } else {
180 self.mast_forest.advice_map_mut().insert(*digest, values.clone());
181 }
182 }
183 Ok(())
184 }
185
186 fn merge_error_codes(&mut self, other_forest: &MastForest) -> Result<(), MastForestError> {
187 self.mast_forest.error_codes.extend(other_forest.error_codes.clone());
188 Ok(())
189 }
190
191 fn merge_node(
192 &mut self,
193 forest_idx: usize,
194 merging_id: MastNodeId,
195 node: &MastNode,
196 ) -> Result<(), MastForestError> {
197 // We need to remap the node prior to computing the MastNodeFingerprint.
198 //
199 // This is because the MastNodeFingerprint computation looks up its descendants and
200 // decorators in the internal index, and if we were to pass the original node to
201 // that computation, it would look up the incorrect descendants and decorators
202 // (since the descendant's indices may have changed).
203 //
204 // Remapping at this point is guaranteed to be "complete", meaning all ids of children
205 // will be present in the node id mapping since the DFS iteration guarantees
206 // that all children of this `node` have been processed before this node and
207 // their indices have been added to the mappings.
208 let remapped_node = self.remap_node(forest_idx, node)?;
209
210 let node_fingerprint = MastNodeFingerprint::from_mast_node(
211 &self.mast_forest,
212 &self.hash_by_node_id,
213 &remapped_node,
214 )
215 .expect(
216 "hash_by_node_id should contain the fingerprints of all children of `remapped_node`",
217 );
218
219 match self.lookup_node_by_fingerprint(&node_fingerprint) {
220 Some(matching_node_id) => {
221 // If a node with a matching fingerprint exists, then the merging node is a
222 // duplicate and we remap it to the existing node.
223 self.node_id_mappings[forest_idx].insert(merging_id, matching_node_id);
224 },
225 None => {
226 // If no node with a matching fingerprint exists, then the merging node is
227 // unique and we can add it to the merged forest.
228 let new_node_id = self.mast_forest.add_node(remapped_node)?;
229 self.node_id_mappings[forest_idx].insert(merging_id, new_node_id);
230
231 // We need to update the indices with the newly inserted nodes
232 // since the MastNodeFingerprint computation requires all descendants of a node
233 // to be in this index. Hence when we encounter a node in the merging forest
234 // which has descendants (Call, Loop, Split, ...), then their descendants need to be
235 // in the indices.
236 self.node_id_by_hash.insert(node_fingerprint, new_node_id);
237 self.hash_by_node_id.insert(new_node_id, node_fingerprint);
238 },
239 }
240
241 Ok(())
242 }
243
244 fn merge_roots(
245 &mut self,
246 forest_idx: usize,
247 other_forest: &MastForest,
248 ) -> Result<(), MastForestError> {
249 for root_id in other_forest.roots.iter() {
250 // Map the previous root to its possibly new id.
251 let new_root = self.node_id_mappings[forest_idx]
252 .get(root_id)
253 .expect("all node ids should have an entry");
254 // This takes O(n) where n is the number of roots in the merged forest every time to
255 // check if the root already exists. As the number of roots is relatively low generally,
256 // this should be okay.
257 self.mast_forest.make_root(*new_root);
258 }
259
260 Ok(())
261 }
262
263 /// Remaps a nodes' potentially contained children and decorators to their new IDs according to
264 /// the given maps.
265 fn remap_node(&self, forest_idx: usize, node: &MastNode) -> Result<MastNode, MastForestError> {
266 let map_decorator_id = |decorator_id: &DecoratorId| {
267 self.decorator_id_mappings[forest_idx].get(decorator_id).ok_or_else(|| {
268 MastForestError::DecoratorIdOverflow(
269 *decorator_id,
270 self.decorator_id_mappings[forest_idx].len(),
271 )
272 })
273 };
274 let map_decorators = |decorators: &[DecoratorId]| -> Result<Vec<_>, MastForestError> {
275 decorators.iter().map(map_decorator_id).collect()
276 };
277
278 let map_node_id = |node_id: MastNodeId| {
279 self.node_id_mappings[forest_idx]
280 .get(&node_id)
281 .copied()
282 .expect("every node id should have an entry")
283 };
284
285 // Due to DFS postorder iteration all children of node's should have been inserted before
286 // their parents which is why we can `expect` the constructor calls here.
287 let mut mapped_node = match node {
288 MastNode::Join(join_node) => {
289 let first = map_node_id(join_node.first());
290 let second = map_node_id(join_node.second());
291
292 MastNode::new_join(first, second, &self.mast_forest)
293 .expect("JoinNode children should have been mapped to a lower index")
294 },
295 MastNode::Split(split_node) => {
296 let if_branch = map_node_id(split_node.on_true());
297 let else_branch = map_node_id(split_node.on_false());
298
299 MastNode::new_split(if_branch, else_branch, &self.mast_forest)
300 .expect("SplitNode children should have been mapped to a lower index")
301 },
302 MastNode::Loop(loop_node) => {
303 let body = map_node_id(loop_node.body());
304 MastNode::new_loop(body, &self.mast_forest)
305 .expect("LoopNode children should have been mapped to a lower index")
306 },
307 MastNode::Call(call_node) => {
308 let callee = map_node_id(call_node.callee());
309 MastNode::new_call(callee, &self.mast_forest)
310 .expect("CallNode children should have been mapped to a lower index")
311 },
312 // Other nodes are simply copied.
313 MastNode::Block(basic_block_node) => {
314 MastNode::new_basic_block(
315 basic_block_node.operations().copied().collect(),
316 // Operation Indices of decorators stay the same while decorator IDs need to be
317 // mapped.
318 Some(
319 basic_block_node
320 .decorators()
321 .iter()
322 .map(|(idx, decorator_id)| match map_decorator_id(decorator_id) {
323 Ok(mapped_decorator) => Ok((*idx, mapped_decorator)),
324 Err(err) => Err(err),
325 })
326 .collect::<Result<Vec<_>, _>>()?,
327 ),
328 )
329 .expect("previously valid BasicBlockNode should still be valid")
330 },
331 MastNode::Dyn(_) => MastNode::new_dyn(),
332 MastNode::External(external_node) => MastNode::new_external(external_node.digest()),
333 };
334
335 // Decorators must be handled specially for basic block nodes.
336 // For other node types we can handle it centrally.
337 if !mapped_node.is_basic_block() {
338 mapped_node.append_before_enter(&map_decorators(node.before_enter())?);
339 mapped_node.append_after_exit(&map_decorators(node.after_exit())?);
340 }
341
342 Ok(mapped_node)
343 }
344
345 // HELPERS
346 // ================================================================================================
347
348 /// Returns a slice of nodes in the merged forest which have the given `mast_root`.
349 fn lookup_node_by_fingerprint(&self, fingerprint: &MastNodeFingerprint) -> Option<MastNodeId> {
350 self.node_id_by_hash.get(fingerprint).copied()
351 }
352}
353
354// MAST FOREST ROOT MAP
355// ================================================================================================
356
357/// A mapping for the new location of the roots of a [`MastForest`] after a merge.
358///
359/// It maps the roots ([`MastNodeId`]s) of a forest to their new [`MastNodeId`] in the merged
360/// forest. See [`MastForest::merge`] for more details.
361#[derive(Debug, Clone, PartialEq, Eq)]
362pub struct MastForestRootMap {
363 root_maps: Vec<BTreeMap<MastNodeId, MastNodeId>>,
364}
365
366impl MastForestRootMap {
367 fn from_node_id_map(id_map: Vec<MastForestNodeIdMap>, forests: Vec<&MastForest>) -> Self {
368 let mut root_maps = vec![BTreeMap::new(); forests.len()];
369
370 for (forest_idx, forest) in forests.into_iter().enumerate() {
371 for root in forest.procedure_roots() {
372 let new_id = id_map[forest_idx]
373 .get(root)
374 .copied()
375 .expect("every node id should be mapped to its new id");
376 root_maps[forest_idx].insert(*root, new_id);
377 }
378 }
379
380 Self { root_maps }
381 }
382
383 /// Maps the given root to its new location in the merged forest, if such a mapping exists.
384 ///
385 /// It is guaranteed that every root of the map's corresponding forest is contained in the map.
386 pub fn map_root(&self, forest_index: usize, root: &MastNodeId) -> Option<MastNodeId> {
387 self.root_maps.get(forest_index).and_then(|map| map.get(root)).copied()
388 }
389}
390
391// DECORATOR ID MAP
392// ================================================================================================
393
394/// A specialized map from [`DecoratorId`] -> [`DecoratorId`].
395///
396/// When mapping Decorator IDs during merging, we always map all IDs of the merging
397/// forest to new ids. Hence it is more efficient to use a `Vec` instead of, say, a `BTreeMap`.
398///
399/// In other words, this type is similar to `BTreeMap<ID, ID>` but takes advantage of the fact that
400/// the keys are contiguous.
401///
402/// This type is meant to encapsulates some guarantees:
403///
404/// - Indexing into the vector for any ID is safe if that ID is valid for the corresponding forest.
405/// Despite that, we still cannot index unconditionally in case a node with invalid
406/// [`DecoratorId`]s is passed to `merge`.
407/// - The entry itself can be either None or Some. However:
408/// - For `DecoratorId`s we iterate and insert all decorators into this map before retrieving any
409/// entry, so all entries contain `Some`. Because of this, we can use `expect` in `get` for the
410/// `Option` value.
411/// - Similarly, inserting any ID from the corresponding forest is safe as the map contains a
412/// pre-allocated `Vec` of the appropriate size.
413struct DecoratorIdMap {
414 inner: Vec<Option<DecoratorId>>,
415}
416
417impl DecoratorIdMap {
418 fn new(num_ids: usize) -> Self {
419 Self { inner: vec![None; num_ids] }
420 }
421
422 /// Maps the given key to the given value.
423 ///
424 /// It is the caller's responsibility to only pass keys that belong to the forest for which this
425 /// map was originally created.
426 fn insert(&mut self, key: DecoratorId, value: DecoratorId) {
427 self.inner[key.as_usize()] = Some(value);
428 }
429
430 /// Retrieves the value for the given key.
431 fn get(&self, key: &DecoratorId) -> Option<DecoratorId> {
432 self.inner
433 .get(key.as_usize())
434 .map(|id| id.expect("every id should have a Some entry in the map when calling get"))
435 }
436
437 fn len(&self) -> usize {
438 self.inner.len()
439 }
440}
441
442/// A type definition for increased readability in function signatures.
443type MastForestNodeIdMap = BTreeMap<MastNodeId, MastNodeId>;