miden_core/mast/node_fingerprint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
use alloc::{collections::BTreeMap, vec::Vec};
use miden_crypto::hash::{
blake::{Blake3Digest, Blake3_256},
rpo::RpoDigest,
Digest,
};
use crate::{
mast::{DecoratorId, MastForest, MastForestError, MastNode, MastNodeId},
Operation,
};
// MAST NODE EQUALITY
// ================================================================================================
pub type DecoratorFingerprint = Blake3Digest<32>;
/// Represents the hash used to test for equality between [`MastNode`]s.
///
/// The decorator root will be `None` if and only if there are no decorators attached to the node,
/// and all children have no decorator roots (meaning that there are no decorators in all the
/// descendants).
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct MastNodeFingerprint {
mast_root: RpoDigest,
decorator_root: Option<DecoratorFingerprint>,
}
// ------------------------------------------------------------------------------------------------
/// Constructors
impl MastNodeFingerprint {
/// Creates a new [`MastNodeFingerprint`] from the given MAST root with an empty decorator root.
pub fn new(mast_root: RpoDigest) -> Self {
Self { mast_root, decorator_root: None }
}
/// Creates a new [`MastNodeFingerprint`] from the given MAST root and the given
/// [`DecoratorFingerprint`].
pub fn with_decorator_root(mast_root: RpoDigest, decorator_root: DecoratorFingerprint) -> Self {
Self {
mast_root,
decorator_root: Some(decorator_root),
}
}
/// Creates a [`MastNodeFingerprint`] from a [`MastNode`].
///
/// The `hash_by_node_id` map must contain all children of the node for efficient lookup of
/// their fingerprints. This function returns an error if a child of the given `node` is not in
/// this map.
pub fn from_mast_node(
forest: &MastForest,
hash_by_node_id: &BTreeMap<MastNodeId, MastNodeFingerprint>,
node: &MastNode,
) -> Result<MastNodeFingerprint, MastForestError> {
match node {
MastNode::Block(node) => {
let mut bytes_to_hash = Vec::new();
for &(idx, decorator_id) in node.decorators() {
bytes_to_hash.extend(idx.to_le_bytes());
bytes_to_hash.extend(forest[decorator_id].fingerprint().as_bytes());
}
// Add any `Assert`, `U32assert2` and `MpVerify` opcodes present, since these are
// not included in the MAST root.
for (op_idx, op) in node.operations().enumerate() {
if let Operation::U32assert2(inner_value)
| Operation::Assert(inner_value)
| Operation::MpVerify(inner_value) = op
{
let op_idx: u32 = op_idx
.try_into()
.expect("there are more than 2^{32}-1 operations in basic block");
// we include the opcode to differentiate between `Assert` and `U32assert2`
bytes_to_hash.push(op.op_code());
// we include the operation index to distinguish between basic blocks that
// would have the same assert instructions, but in a different order
bytes_to_hash.extend(op_idx.to_le_bytes());
bytes_to_hash.extend(inner_value.to_le_bytes());
}
}
if bytes_to_hash.is_empty() {
Ok(MastNodeFingerprint::new(node.digest()))
} else {
let decorator_root = Blake3_256::hash(&bytes_to_hash);
Ok(MastNodeFingerprint::with_decorator_root(node.digest(), decorator_root))
}
},
MastNode::Join(node) => fingerprint_from_parts(
forest,
hash_by_node_id,
node.before_enter(),
node.after_exit(),
&[node.first(), node.second()],
node.digest(),
),
MastNode::Split(node) => fingerprint_from_parts(
forest,
hash_by_node_id,
node.before_enter(),
node.after_exit(),
&[node.on_true(), node.on_false()],
node.digest(),
),
MastNode::Loop(node) => fingerprint_from_parts(
forest,
hash_by_node_id,
node.before_enter(),
node.after_exit(),
&[node.body()],
node.digest(),
),
MastNode::Call(node) => fingerprint_from_parts(
forest,
hash_by_node_id,
node.before_enter(),
node.after_exit(),
&[node.callee()],
node.digest(),
),
MastNode::Dyn(node) => fingerprint_from_parts(
forest,
hash_by_node_id,
node.before_enter(),
node.after_exit(),
&[],
node.digest(),
),
MastNode::External(node) => fingerprint_from_parts(
forest,
hash_by_node_id,
node.before_enter(),
node.after_exit(),
&[],
node.digest(),
),
}
}
}
// ------------------------------------------------------------------------------------------------
/// Accessors
impl MastNodeFingerprint {
pub fn mast_root(&self) -> &RpoDigest {
&self.mast_root
}
}
fn fingerprint_from_parts(
forest: &MastForest,
hash_by_node_id: &BTreeMap<MastNodeId, MastNodeFingerprint>,
before_enter_ids: &[DecoratorId],
after_exit_ids: &[DecoratorId],
children_ids: &[MastNodeId],
node_digest: RpoDigest,
) -> Result<MastNodeFingerprint, MastForestError> {
let pre_decorator_hash_bytes =
before_enter_ids.iter().flat_map(|&id| forest[id].fingerprint().as_bytes());
let post_decorator_hash_bytes =
after_exit_ids.iter().flat_map(|&id| forest[id].fingerprint().as_bytes());
let children_decorator_roots = children_ids
.iter()
.filter_map(|child_id| {
hash_by_node_id
.get(child_id)
.ok_or(MastForestError::ChildFingerprintMissing(*child_id))
.map(|child_fingerprint| child_fingerprint.decorator_root)
.transpose()
})
.collect::<Result<Vec<DecoratorFingerprint>, MastForestError>>()?;
// Reminder: the `MastNodeFingerprint`'s decorator root will be `None` if and only if there are
// no decorators attached to the node, and all children have no decorator roots (meaning
// that there are no decorators in all the descendants).
if pre_decorator_hash_bytes.clone().next().is_none()
&& post_decorator_hash_bytes.clone().next().is_none()
&& children_decorator_roots.is_empty()
{
Ok(MastNodeFingerprint::new(node_digest))
} else {
let decorator_bytes_to_hash: Vec<u8> = pre_decorator_hash_bytes
.chain(post_decorator_hash_bytes)
.chain(
children_decorator_roots
.into_iter()
.flat_map(|decorator_root| decorator_root.as_bytes()),
)
.collect();
let decorator_root = Blake3_256::hash(&decorator_bytes_to_hash);
Ok(MastNodeFingerprint::with_decorator_root(node_digest, decorator_root))
}
}