miden_core/mast/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
use alloc::{
collections::{BTreeMap, BTreeSet},
vec::Vec,
};
use core::{
fmt, mem,
ops::{Index, IndexMut},
};
use miden_crypto::hash::rpo::RpoDigest;
mod node;
pub use node::{
BasicBlockNode, CallNode, DynNode, ExternalNode, JoinNode, LoopNode, MastNode, OpBatch,
OperationOrDecorator, SplitNode, OP_BATCH_SIZE, OP_GROUP_SIZE,
};
use winter_utils::{ByteWriter, DeserializationError, Serializable};
use crate::{Decorator, DecoratorList, Operation};
mod serialization;
mod merger;
pub(crate) use merger::MastForestMerger;
pub use merger::MastForestRootMap;
mod multi_forest_node_iterator;
pub(crate) use multi_forest_node_iterator::*;
mod node_fingerprint;
pub use node_fingerprint::{DecoratorFingerprint, MastNodeFingerprint};
#[cfg(test)]
mod tests;
// MAST FOREST
// ================================================================================================
/// Represents one or more procedures, represented as a collection of [`MastNode`]s.
///
/// A [`MastForest`] does not have an entrypoint, and hence is not executable. A [`crate::Program`]
/// can be built from a [`MastForest`] to specify an entrypoint.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct MastForest {
/// All of the nodes local to the trees comprising the MAST forest.
nodes: Vec<MastNode>,
/// Roots of procedures defined within this MAST forest.
roots: Vec<MastNodeId>,
/// All the decorators included in the MAST forest.
decorators: Vec<Decorator>,
}
// ------------------------------------------------------------------------------------------------
/// Constructors
impl MastForest {
/// Creates a new empty [`MastForest`].
pub fn new() -> Self {
Self::default()
}
}
// ------------------------------------------------------------------------------------------------
/// State mutators
impl MastForest {
/// The maximum number of nodes that can be stored in a single MAST forest.
const MAX_NODES: usize = (1 << 30) - 1;
/// The maximum number of decorators that can be stored in a single MAST forest.
const MAX_DECORATORS: usize = Self::MAX_NODES;
/// Adds a decorator to the forest, and returns the associated [`DecoratorId`].
pub fn add_decorator(&mut self, decorator: Decorator) -> Result<DecoratorId, MastForestError> {
if self.decorators.len() >= u32::MAX as usize {
return Err(MastForestError::TooManyDecorators);
}
let new_decorator_id = DecoratorId(self.decorators.len() as u32);
self.decorators.push(decorator);
Ok(new_decorator_id)
}
/// Adds a node to the forest, and returns the associated [`MastNodeId`].
///
/// Adding two duplicate nodes will result in two distinct returned [`MastNodeId`]s.
pub fn add_node(&mut self, node: MastNode) -> Result<MastNodeId, MastForestError> {
if self.nodes.len() == Self::MAX_NODES {
return Err(MastForestError::TooManyNodes);
}
let new_node_id = MastNodeId(self.nodes.len() as u32);
self.nodes.push(node);
Ok(new_node_id)
}
/// Adds a basic block node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_block(
&mut self,
operations: Vec<Operation>,
decorators: Option<DecoratorList>,
) -> Result<MastNodeId, MastForestError> {
let block = MastNode::new_basic_block(operations, decorators)?;
self.add_node(block)
}
/// Adds a join node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_join(
&mut self,
left_child: MastNodeId,
right_child: MastNodeId,
) -> Result<MastNodeId, MastForestError> {
let join = MastNode::new_join(left_child, right_child, self)?;
self.add_node(join)
}
/// Adds a split node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_split(
&mut self,
if_branch: MastNodeId,
else_branch: MastNodeId,
) -> Result<MastNodeId, MastForestError> {
let split = MastNode::new_split(if_branch, else_branch, self)?;
self.add_node(split)
}
/// Adds a loop node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_loop(&mut self, body: MastNodeId) -> Result<MastNodeId, MastForestError> {
let loop_node = MastNode::new_loop(body, self)?;
self.add_node(loop_node)
}
/// Adds a call node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_call(&mut self, callee: MastNodeId) -> Result<MastNodeId, MastForestError> {
let call = MastNode::new_call(callee, self)?;
self.add_node(call)
}
/// Adds a syscall node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_syscall(&mut self, callee: MastNodeId) -> Result<MastNodeId, MastForestError> {
let syscall = MastNode::new_syscall(callee, self)?;
self.add_node(syscall)
}
/// Adds a dyn node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_dyn(&mut self) -> Result<MastNodeId, MastForestError> {
self.add_node(MastNode::new_dyn())
}
/// Adds a dyncall node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_dyncall(&mut self) -> Result<MastNodeId, MastForestError> {
self.add_node(MastNode::new_dyncall())
}
/// Adds an external node to the forest, and returns the [`MastNodeId`] associated with it.
pub fn add_external(&mut self, mast_root: RpoDigest) -> Result<MastNodeId, MastForestError> {
self.add_node(MastNode::new_external(mast_root))
}
/// Marks the given [`MastNodeId`] as being the root of a procedure.
///
/// If the specified node is already marked as a root, this will have no effect.
///
/// # Panics
/// - if `new_root_id`'s internal index is larger than the number of nodes in this forest (i.e.
/// clearly doesn't belong to this MAST forest).
pub fn make_root(&mut self, new_root_id: MastNodeId) {
assert!((new_root_id.0 as usize) < self.nodes.len());
if !self.roots.contains(&new_root_id) {
self.roots.push(new_root_id);
}
}
/// Removes all nodes in the provided set from the MAST forest. The nodes MUST be orphaned (i.e.
/// have no parent). Otherwise, this parent's reference is considered "dangling" after the
/// removal (i.e. will point to an incorrect node after the removal), and this removal operation
/// would result in an invalid [`MastForest`].
///
/// It also returns the map from old node IDs to new node IDs; or `None` if the set of nodes to
/// remove was empty. Any [`MastNodeId`] used in reference to the old [`MastForest`] should be
/// remapped using this map.
pub fn remove_nodes(
&mut self,
nodes_to_remove: &BTreeSet<MastNodeId>,
) -> Option<BTreeMap<MastNodeId, MastNodeId>> {
if nodes_to_remove.is_empty() {
return None;
}
let old_nodes = mem::take(&mut self.nodes);
let old_root_ids = mem::take(&mut self.roots);
let (retained_nodes, id_remappings) = remove_nodes(old_nodes, nodes_to_remove);
self.remap_and_add_nodes(retained_nodes, &id_remappings);
self.remap_and_add_roots(old_root_ids, &id_remappings);
Some(id_remappings)
}
pub fn set_before_enter(&mut self, node_id: MastNodeId, decorator_ids: Vec<DecoratorId>) {
self[node_id].set_before_enter(decorator_ids)
}
pub fn set_after_exit(&mut self, node_id: MastNodeId, decorator_ids: Vec<DecoratorId>) {
self[node_id].set_after_exit(decorator_ids)
}
/// Merges all `forests` into a new [`MastForest`].
///
/// Merging two forests means combining all their constituent parts, i.e. [`MastNode`]s,
/// [`Decorator`]s and roots. During this process, any duplicate or
/// unreachable nodes are removed. Additionally, [`MastNodeId`]s of nodes as well as
/// [`DecoratorId`]s of decorators may change and references to them are remapped to their new
/// location.
///
/// For example, consider this representation of a forest's nodes with all of these nodes being
/// roots:
///
/// ```text
/// [Block(foo), Block(bar)]
/// ```
///
/// If we merge another forest into it:
///
/// ```text
/// [Block(bar), Call(0)]
/// ```
///
/// then we would expect this forest:
///
/// ```text
/// [Block(foo), Block(bar), Call(1)]
/// ```
///
/// - The `Call` to the `bar` block was remapped to its new index (now 1, previously 0).
/// - The `Block(bar)` was deduplicated any only exists once in the merged forest.
///
/// The function also returns a vector of [`MastForestRootMap`]s, whose length equals the number
/// of passed `forests`. The indices in the vector correspond to the ones in `forests`. The map
/// of a given forest contains the new locations of its roots in the merged forest. To
/// illustrate, the above example would return a vector of two maps:
///
/// ```text
/// vec![{0 -> 0, 1 -> 1}
/// {0 -> 1, 1 -> 2}]
/// ```
///
/// - The root locations of the original forest are unchanged.
/// - For the second forest, the `bar` block has moved from index 0 to index 1 in the merged
/// forest, and the `Call` has moved from index 1 to 2.
///
/// If any forest being merged contains an `External(qux)` node and another forest contains a
/// node whose digest is `qux`, then the external node will be replaced with the `qux` node,
/// which is effectively deduplication. Decorators are ignored when it comes to merging
/// External nodes. This means that an External node with decorators may be replaced by a node
/// without decorators or vice versa.
pub fn merge<'forest>(
forests: impl IntoIterator<Item = &'forest MastForest>,
) -> Result<(MastForest, MastForestRootMap), MastForestError> {
MastForestMerger::merge(forests)
}
/// Adds a basic block node to the forest, and returns the [`MastNodeId`] associated with it.
///
/// It is assumed that the decorators have not already been added to the MAST forest. If they
/// were, they will be added again (and result in a different set of [`DecoratorId`]s).
#[cfg(test)]
pub fn add_block_with_raw_decorators(
&mut self,
operations: Vec<Operation>,
decorators: Vec<(usize, Decorator)>,
) -> Result<MastNodeId, MastForestError> {
let block = MastNode::new_basic_block_with_raw_decorators(operations, decorators, self)?;
self.add_node(block)
}
}
/// Helpers
impl MastForest {
/// Adds all provided nodes to the internal set of nodes, remapping all [`MastNodeId`]
/// references in those nodes.
///
/// # Panics
/// - Panics if the internal set of nodes is not empty.
fn remap_and_add_nodes(
&mut self,
nodes_to_add: Vec<MastNode>,
id_remappings: &BTreeMap<MastNodeId, MastNodeId>,
) {
assert!(self.nodes.is_empty());
// Add each node to the new MAST forest, making sure to rewrite any outdated internal
// `MastNodeId`s
for live_node in nodes_to_add {
match &live_node {
MastNode::Join(join_node) => {
let first_child =
id_remappings.get(&join_node.first()).copied().unwrap_or(join_node.first());
let second_child = id_remappings
.get(&join_node.second())
.copied()
.unwrap_or(join_node.second());
self.add_join(first_child, second_child).unwrap();
},
MastNode::Split(split_node) => {
let on_true_child = id_remappings
.get(&split_node.on_true())
.copied()
.unwrap_or(split_node.on_true());
let on_false_child = id_remappings
.get(&split_node.on_false())
.copied()
.unwrap_or(split_node.on_false());
self.add_split(on_true_child, on_false_child).unwrap();
},
MastNode::Loop(loop_node) => {
let body_id =
id_remappings.get(&loop_node.body()).copied().unwrap_or(loop_node.body());
self.add_loop(body_id).unwrap();
},
MastNode::Call(call_node) => {
let callee_id = id_remappings
.get(&call_node.callee())
.copied()
.unwrap_or(call_node.callee());
if call_node.is_syscall() {
self.add_syscall(callee_id).unwrap();
} else {
self.add_call(callee_id).unwrap();
}
},
MastNode::Block(_) | MastNode::Dyn(_) | MastNode::External(_) => {
self.add_node(live_node).unwrap();
},
}
}
}
/// Remaps and adds all old root ids to the internal set of roots.
///
/// # Panics
/// - Panics if the internal set of roots is not empty.
fn remap_and_add_roots(
&mut self,
old_root_ids: Vec<MastNodeId>,
id_remappings: &BTreeMap<MastNodeId, MastNodeId>,
) {
assert!(self.roots.is_empty());
for old_root_id in old_root_ids {
let new_root_id = id_remappings.get(&old_root_id).copied().unwrap_or(old_root_id);
self.make_root(new_root_id);
}
}
}
/// Returns the set of nodes that are live, as well as the mapping from "old ID" to "new ID" for all
/// live nodes.
fn remove_nodes(
mast_nodes: Vec<MastNode>,
nodes_to_remove: &BTreeSet<MastNodeId>,
) -> (Vec<MastNode>, BTreeMap<MastNodeId, MastNodeId>) {
// Note: this allows us to safely use `usize as u32`, guaranteeing that it won't wrap around.
assert!(mast_nodes.len() < u32::MAX as usize);
let mut retained_nodes = Vec::with_capacity(mast_nodes.len());
let mut id_remappings = BTreeMap::new();
for (old_node_index, old_node) in mast_nodes.into_iter().enumerate() {
let old_node_id: MastNodeId = MastNodeId(old_node_index as u32);
if !nodes_to_remove.contains(&old_node_id) {
let new_node_id: MastNodeId = MastNodeId(retained_nodes.len() as u32);
id_remappings.insert(old_node_id, new_node_id);
retained_nodes.push(old_node);
}
}
(retained_nodes, id_remappings)
}
// ------------------------------------------------------------------------------------------------
/// Public accessors
impl MastForest {
/// Returns the [`Decorator`] associated with the provided [`DecoratorId`] if valid, or else
/// `None`.
///
/// This is the fallible version of indexing (e.g. `mast_forest[decorator_id]`).
#[inline(always)]
pub fn get_decorator_by_id(&self, decorator_id: DecoratorId) -> Option<&Decorator> {
let idx = decorator_id.0 as usize;
self.decorators.get(idx)
}
/// Returns the [`MastNode`] associated with the provided [`MastNodeId`] if valid, or else
/// `None`.
///
/// This is the fallible version of indexing (e.g. `mast_forest[node_id]`).
#[inline(always)]
pub fn get_node_by_id(&self, node_id: MastNodeId) -> Option<&MastNode> {
let idx = node_id.0 as usize;
self.nodes.get(idx)
}
/// Returns the [`MastNodeId`] of the procedure associated with a given digest, if any.
#[inline(always)]
pub fn find_procedure_root(&self, digest: RpoDigest) -> Option<MastNodeId> {
self.roots.iter().find(|&&root_id| self[root_id].digest() == digest).copied()
}
/// Returns true if a node with the specified ID is a root of a procedure in this MAST forest.
pub fn is_procedure_root(&self, node_id: MastNodeId) -> bool {
self.roots.contains(&node_id)
}
/// Returns an iterator over the digests of all procedures in this MAST forest.
pub fn procedure_digests(&self) -> impl Iterator<Item = RpoDigest> + '_ {
self.roots.iter().map(|&root_id| self[root_id].digest())
}
/// Returns an iterator over the digests of local procedures in this MAST forest.
///
/// A local procedure is defined as a procedure which is not a single external node.
pub fn local_procedure_digests(&self) -> impl Iterator<Item = RpoDigest> + '_ {
self.roots.iter().filter_map(|&root_id| {
let node = &self[root_id];
if node.is_external() {
None
} else {
Some(node.digest())
}
})
}
/// Returns an iterator over the IDs of the procedures in this MAST forest.
pub fn procedure_roots(&self) -> &[MastNodeId] {
&self.roots
}
/// Returns the number of procedures in this MAST forest.
pub fn num_procedures(&self) -> u32 {
self.roots
.len()
.try_into()
.expect("MAST forest contains more than 2^32 procedures.")
}
/// Returns the number of nodes in this MAST forest.
pub fn num_nodes(&self) -> u32 {
self.nodes.len() as u32
}
/// Returns the underlying nodes in this MAST forest.
pub fn nodes(&self) -> &[MastNode] {
&self.nodes
}
}
impl Index<MastNodeId> for MastForest {
type Output = MastNode;
#[inline(always)]
fn index(&self, node_id: MastNodeId) -> &Self::Output {
let idx = node_id.0 as usize;
&self.nodes[idx]
}
}
impl IndexMut<MastNodeId> for MastForest {
#[inline(always)]
fn index_mut(&mut self, node_id: MastNodeId) -> &mut Self::Output {
let idx = node_id.0 as usize;
&mut self.nodes[idx]
}
}
impl Index<DecoratorId> for MastForest {
type Output = Decorator;
#[inline(always)]
fn index(&self, decorator_id: DecoratorId) -> &Self::Output {
let idx = decorator_id.0 as usize;
&self.decorators[idx]
}
}
impl IndexMut<DecoratorId> for MastForest {
#[inline(always)]
fn index_mut(&mut self, decorator_id: DecoratorId) -> &mut Self::Output {
let idx = decorator_id.0 as usize;
&mut self.decorators[idx]
}
}
// MAST NODE ID
// ================================================================================================
/// An opaque handle to a [`MastNode`] in some [`MastForest`]. It is the responsibility of the user
/// to use a given [`MastNodeId`] with the corresponding [`MastForest`].
///
/// Note that the [`MastForest`] does *not* ensure that equal [`MastNode`]s have equal
/// [`MastNodeId`] handles. Hence, [`MastNodeId`] equality must not be used to test for equality of
/// the underlying [`MastNode`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct MastNodeId(u32);
impl MastNodeId {
/// Returns a new `MastNodeId` with the provided inner value, or an error if the provided
/// `value` is greater than the number of nodes in the forest.
///
/// For use in deserialization.
pub fn from_u32_safe(
value: u32,
mast_forest: &MastForest,
) -> Result<Self, DeserializationError> {
Self::from_u32_with_node_count(value, mast_forest.nodes.len())
}
/// Returns a new [`MastNodeId`] from the given `value` without checking its validity.
pub(crate) fn new_unchecked(value: u32) -> Self {
Self(value)
}
/// Returns a new [`MastNodeId`] with the provided `id`, or an error if `id` is greater or equal
/// to `node_count`. The `node_count` is the total number of nodes in the [`MastForest`] for
/// which this ID is being constructed.
///
/// This function can be used when deserializing an id whose corresponding node is not yet in
/// the forest and [`Self::from_u32_safe`] would fail. For instance, when deserializing the ids
/// referenced by the Join node in this forest:
///
/// ```text
/// [Join(1, 2), Block(foo), Block(bar)]
/// ```
///
/// Since it is less safe than [`Self::from_u32_safe`] and usually not needed it is not public.
pub(super) fn from_u32_with_node_count(
id: u32,
node_count: usize,
) -> Result<Self, DeserializationError> {
if (id as usize) < node_count {
Ok(Self(id))
} else {
Err(DeserializationError::InvalidValue(format!(
"Invalid deserialized MAST node ID '{}', but {} is the number of nodes in the forest",
id, node_count,
)))
}
}
pub fn as_usize(&self) -> usize {
self.0 as usize
}
pub fn as_u32(&self) -> u32 {
self.0
}
}
impl From<MastNodeId> for usize {
fn from(value: MastNodeId) -> Self {
value.0 as usize
}
}
impl From<MastNodeId> for u32 {
fn from(value: MastNodeId) -> Self {
value.0
}
}
impl From<&MastNodeId> for u32 {
fn from(value: &MastNodeId) -> Self {
value.0
}
}
impl fmt::Display for MastNodeId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "MastNodeId({})", self.0)
}
}
// DECORATOR ID
// ================================================================================================
/// An opaque handle to a [`Decorator`] in some [`MastForest`]. It is the responsibility of the user
/// to use a given [`DecoratorId`] with the corresponding [`MastForest`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DecoratorId(u32);
impl DecoratorId {
/// Returns a new `DecoratorId` with the provided inner value, or an error if the provided
/// `value` is greater than the number of nodes in the forest.
///
/// For use in deserialization.
pub fn from_u32_safe(
value: u32,
mast_forest: &MastForest,
) -> Result<Self, DeserializationError> {
if (value as usize) < mast_forest.decorators.len() {
Ok(Self(value))
} else {
Err(DeserializationError::InvalidValue(format!(
"Invalid deserialized MAST decorator id '{}', but only {} decorators in the forest",
value,
mast_forest.nodes.len(),
)))
}
}
/// Creates a new [`DecoratorId`] without checking its validity.
pub(crate) fn new_unchecked(value: u32) -> Self {
Self(value)
}
pub fn as_usize(&self) -> usize {
self.0 as usize
}
pub fn as_u32(&self) -> u32 {
self.0
}
}
impl From<DecoratorId> for usize {
fn from(value: DecoratorId) -> Self {
value.0 as usize
}
}
impl From<DecoratorId> for u32 {
fn from(value: DecoratorId) -> Self {
value.0
}
}
impl From<&DecoratorId> for u32 {
fn from(value: &DecoratorId) -> Self {
value.0
}
}
impl fmt::Display for DecoratorId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "DecoratorId({})", self.0)
}
}
impl Serializable for DecoratorId {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
self.0.write_into(target)
}
}
// MAST FOREST ERROR
// ================================================================================================
/// Represents the types of errors that can occur when dealing with MAST forest.
#[derive(Debug, thiserror::Error, PartialEq)]
pub enum MastForestError {
#[error(
"invalid decorator count: MAST forest exceeds the maximum of {} decorators",
u32::MAX
)]
TooManyDecorators,
#[error(
"invalid node count: MAST forest exceeds the maximum of {} nodes",
MastForest::MAX_NODES
)]
TooManyNodes,
#[error("node id: {0} is greater than or equal to forest length: {1}")]
NodeIdOverflow(MastNodeId, usize),
#[error("decorator id: {0} is greater than or equal to decorator count: {1}")]
DecoratorIdOverflow(DecoratorId, usize),
#[error("basic block cannot be created from an empty list of operations")]
EmptyBasicBlock,
#[error("decorator root of child with node id {0} is missing but required for fingerprint computation")]
ChildFingerprintMissing(MastNodeId),
}