1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
use super::{
ast::{instrument, Instruction, ModuleAst, Node, ProcedureAst, ProgramAst},
btree_map,
crypto::hash::RpoDigest,
AssemblyError, BTreeMap, CallSet, CodeBlock, CodeBlockTable, Felt, Kernel, Library,
LibraryError, LibraryPath, Module, NamedProcedure, Operation, Procedure, ProcedureId,
ProcedureName, Program, ONE, ZERO,
};
use crate::utils::collections::*;
use core::{borrow::Borrow, cell::RefCell};
use vm_core::{utils::group_vector_elements, Decorator, DecoratorList};
mod instruction;
mod module_provider;
use module_provider::ModuleProvider;
mod span_builder;
use span_builder::SpanBuilder;
mod context;
pub use context::AssemblyContext;
mod procedure_cache;
use procedure_cache::ProcedureCache;
#[cfg(test)]
mod tests;
// ASSEMBLER
// ================================================================================================
/// Miden Assembler which can be used to convert Miden assembly source code into program MAST.
///
/// The assembler can be instantiated in several ways using a "builder" pattern. Specifically:
/// - If `with_kernel()` or `with_kernel_module()` methods are not used, the assembler will be
/// instantiated with a default empty kernel. Programs compiled using such assembler
/// cannot make calls to kernel procedures via `syscall` instruction.
#[derive(Default)]
pub struct Assembler {
kernel: Kernel,
module_provider: ModuleProvider,
proc_cache: RefCell<ProcedureCache>,
in_debug_mode: bool,
}
impl Assembler {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Puts the assembler into the debug mode.
pub fn with_debug_mode(mut self, in_debug_mode: bool) -> Self {
self.in_debug_mode = in_debug_mode;
self
}
/// Adds the library to provide modules for the compilation.
pub fn with_library<L>(mut self, library: &L) -> Result<Self, AssemblyError>
where
L: Library,
{
self.module_provider.add_library(library)?;
Ok(self)
}
/// Adds a library bundle to provide modules for the compilation.
pub fn with_libraries<I, L>(self, mut libraries: I) -> Result<Self, AssemblyError>
where
L: Library,
I: Iterator<Item = L>,
{
libraries.try_fold(self, |slf, library| slf.with_library(&library))
}
/// Sets the kernel for the assembler to the kernel defined by the provided source.
///
/// # Errors
/// Returns an error if compiling kernel source results in an error.
///
/// # Panics
/// Panics if the assembler has already been used to compile programs.
pub fn with_kernel(self, kernel_source: &str) -> Result<Self, AssemblyError> {
let kernel_ast = ModuleAst::parse(kernel_source)?;
self.with_kernel_module(kernel_ast)
}
/// Sets the kernel for the assembler to the kernel defined by the provided module.
///
/// # Errors
/// Returns an error if compiling kernel source results in an error.
pub fn with_kernel_module(mut self, module: ModuleAst) -> Result<Self, AssemblyError> {
// compile the kernel; this adds all exported kernel procedures to the procedure cache
let mut context = AssemblyContext::for_module(true);
let kernel = Module::kernel(module);
self.compile_module(&kernel.ast, Some(&kernel.path), &mut context)?;
// convert the context into Kernel; this builds the kernel from hashes of procedures
// exported form the kernel module
self.kernel = context.into_kernel();
Ok(self)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns true if this assembler was instantiated in debug mode.
pub fn in_debug_mode(&self) -> bool {
self.in_debug_mode
}
/// Returns a reference to the kernel for this assembler.
///
/// If the assembler was instantiated without a kernel, the internal kernel will be empty.
pub fn kernel(&self) -> &Kernel {
&self.kernel
}
// PROGRAM COMPILER
// --------------------------------------------------------------------------------------------
/// Compiles the provided source code into a [Program]. The resulting program can be executed
/// on Miden VM.
///
/// # Errors
/// Returns an error if parsing or compilation of the specified program fails.
pub fn compile<S>(&self, source: S) -> Result<Program, AssemblyError>
where
S: AsRef<str>,
{
// parse the program into an AST
let source = source.as_ref();
let program = ProgramAst::parse(source)?;
// compile the program and return
self.compile_ast(&program)
}
/// Compiles the provided abstract syntax tree into a [Program]. The resulting program can be
/// executed on Miden VM.
///
/// # Errors
/// Returns an error if the compilation of the specified program fails.
#[instrument("compile_ast", skip_all)]
pub fn compile_ast(&self, program: &ProgramAst) -> Result<Program, AssemblyError> {
// compile the program
let mut context = AssemblyContext::for_program(Some(program));
let program_root = self.compile_in_context(program, &mut context)?;
// convert the context into a call block table for the program
let cb_table = context.into_cb_table(&self.proc_cache.borrow())?;
// build and return the program
Ok(Program::with_kernel(program_root, self.kernel.clone(), cb_table))
}
/// Compiles the provided [ProgramAst] into a program and returns the program root
/// ([CodeBlock]). Mutates the provided context by adding all of the call targets of
/// the program to the [CallSet].
///
/// # Errors
/// - If the provided context is not appropriate for compiling a program.
/// - If any of the local procedures defined in the program are exported.
/// - If compilation of any of the local procedures fails.
/// - if compilation of the program body fails.
pub fn compile_in_context(
&self,
program: &ProgramAst,
context: &mut AssemblyContext,
) -> Result<CodeBlock, AssemblyError> {
// check to ensure that the context is appropriate for compiling a program
if context.current_context_name() != ProcedureName::main().as_str() {
return Err(AssemblyError::InvalidProgramAssemblyContext);
}
// compile all local procedures; this will add the procedures to the specified context
for proc_ast in program.procedures() {
if proc_ast.is_export {
return Err(AssemblyError::exported_proc_in_program(&proc_ast.name));
}
self.compile_procedure(proc_ast, context)?;
}
// compile the program body
let program_root = self.compile_body(program.body().nodes().iter(), context, None)?;
Ok(program_root)
}
// MODULE COMPILER
// --------------------------------------------------------------------------------------------
/// Compiles all procedures in the specified module and adds them to the procedure cache.
/// Returns a vector of procedure digests for all exported procedures in the module.
///
/// # Errors
/// - If a module with the same path already exists in the module stack of the
/// [AssemblyContext].
/// - If a lock to the [ProcedureCache] can not be attained.
#[instrument(level = "trace",
name = "compile_module",
fields(module = path.unwrap_or(&LibraryPath::anon_path()).path()), skip_all)]
pub fn compile_module(
&self,
module: &ModuleAst,
path: Option<&LibraryPath>,
context: &mut AssemblyContext,
) -> Result<Vec<RpoDigest>, AssemblyError> {
// a variable to track MAST roots of all procedures exported from this module
let mut proc_roots = Vec::new();
context.begin_module(path.unwrap_or(&LibraryPath::anon_path()), module)?;
// process all re-exported procedures
for reexporteed_proc in module.reexported_procs().iter() {
// make sure the re-exported procedure is loaded into the procedure cache
let ref_proc_id = reexporteed_proc.proc_id();
self.ensure_procedure_is_in_cache(&ref_proc_id, context).map_err(|_| {
AssemblyError::ReExportedProcModuleNotFound(reexporteed_proc.clone())
})?;
// if the library path is provided, build procedure ID for the alias and add it to the
// procedure cache
let proc_mast_root = if let Some(path) = path {
let proc_name = reexporteed_proc.name();
let alias_proc_id = ProcedureId::from_name(proc_name, path);
self.proc_cache
.try_borrow_mut()
.map_err(|_| AssemblyError::InvalidCacheLock)?
.insert_proc_alias(alias_proc_id, ref_proc_id)?
} else {
self.proc_cache
.try_borrow_mut()
.map_err(|_| AssemblyError::InvalidCacheLock)?
.get_proc_root_by_id(&ref_proc_id)
.expect("procedure ID not in cache")
};
// add the MAST root of the re-exported procedure to the set of procedures exported
// from this module
proc_roots.push(proc_mast_root);
}
// compile all local (internal end exported) procedures in the module; once the compilation
// is complete, we get all compiled procedures (and their combined callset) from the
// context
for proc_ast in module.procs().iter() {
self.compile_procedure(proc_ast, context)?;
}
let (module_procs, module_callset) = context.complete_module()?;
// add the compiled procedures to the assembler's cache. the procedures are added to the
// cache only if:
// - a procedure is exported from the module, or
// - a procedure is present in the combined callset - i.e., it is an internal procedure
// which has been invoked via a local call instruction.
for (proc_index, proc) in module_procs.into_iter().enumerate() {
if proc.is_export() {
proc_roots.push(proc.mast_root());
}
if proc.is_export() || module_callset.contains(&proc.mast_root()) {
// build the procedure ID if this module has the library path
let proc_id = build_procedure_id(path, &proc, proc_index);
// this is safe because we fail if the cache is borrowed.
self.proc_cache
.try_borrow_mut()
.map_err(|_| AssemblyError::InvalidCacheLock)?
.insert(proc, proc_id)?;
}
}
Ok(proc_roots)
}
// PROCEDURE COMPILER
// --------------------------------------------------------------------------------------------
/// Compiles procedure AST into MAST and adds the complied procedure to the provided context.
fn compile_procedure(
&self,
proc: &ProcedureAst,
context: &mut AssemblyContext,
) -> Result<(), AssemblyError> {
context.begin_proc(&proc.name, proc.is_export, proc.num_locals)?;
let code = if proc.num_locals > 0 {
// for procedures with locals, we need to update fmp register before and after the
// procedure body is executed. specifically:
// - to allocate procedure locals we need to increment fmp by the number of locals
// - to deallocate procedure locals we need to decrement it by the same amount
let num_locals = Felt::from(proc.num_locals);
let wrapper = BodyWrapper {
prologue: vec![Operation::Push(num_locals), Operation::FmpUpdate],
epilogue: vec![Operation::Push(-num_locals), Operation::FmpUpdate],
};
self.compile_body(proc.body.nodes().iter(), context, Some(wrapper))?
} else {
self.compile_body(proc.body.nodes().iter(), context, None)?
};
context.complete_proc(code);
Ok(())
}
// CODE BODY COMPILER
// --------------------------------------------------------------------------------------------
/// TODO: add comments
fn compile_body<A, N>(
&self,
body: A,
context: &mut AssemblyContext,
wrapper: Option<BodyWrapper>,
) -> Result<CodeBlock, AssemblyError>
where
A: Iterator<Item = N>,
N: Borrow<Node>,
{
let mut blocks: Vec<CodeBlock> = Vec::new();
let mut span = SpanBuilder::new(wrapper);
for node in body {
match node.borrow() {
Node::Instruction(inner) => {
if let Some(block) = self.compile_instruction(inner, &mut span, context)? {
span.extract_span_into(&mut blocks);
blocks.push(block);
}
}
Node::IfElse {
true_case,
false_case,
} => {
span.extract_span_into(&mut blocks);
let true_case = self.compile_body(true_case.nodes().iter(), context, None)?;
// else is an exception because it is optional; hence, will have to be replaced
// by noop span
let false_case = if !false_case.nodes().is_empty() {
self.compile_body(false_case.nodes().iter(), context, None)?
} else {
CodeBlock::new_span(vec![Operation::Noop])
};
let block = CodeBlock::new_split(true_case, false_case);
blocks.push(block);
}
Node::Repeat { times, body } => {
span.extract_span_into(&mut blocks);
let block = self.compile_body(body.nodes().iter(), context, None)?;
for _ in 0..*times {
blocks.push(block.clone());
}
}
Node::While { body } => {
span.extract_span_into(&mut blocks);
let block = self.compile_body(body.nodes().iter(), context, None)?;
let block = CodeBlock::new_loop(block);
blocks.push(block);
}
}
}
span.extract_final_span_into(&mut blocks);
Ok(if blocks.is_empty() {
CodeBlock::new_span(vec![Operation::Noop])
} else {
combine_blocks(blocks)
})
}
// PROCEDURE CACHE
// --------------------------------------------------------------------------------------------
/// Ensures that a procedure with the specified [ProcedureId] exists in the cache. Otherwise,
/// attempt to fetch it from the module provider, compile, and check again.
///
/// If `Ok` is returned, the procedure can be safely unwrapped from the cache.
///
/// # Panics
///
/// This function will panic if the internal procedure cache is mutably borrowed somewhere.
fn ensure_procedure_is_in_cache(
&self,
proc_id: &ProcedureId,
context: &mut AssemblyContext,
) -> Result<(), AssemblyError> {
if !self.proc_cache.borrow().contains_id(proc_id) {
// if procedure is not in cache, try to get its module and compile it
let module = self.module_provider.get_module(proc_id).ok_or_else(|| {
let proc_name = context.get_imported_procedure_name(proc_id);
AssemblyError::imported_proc_module_not_found(proc_id, proc_name)
})?;
self.compile_module(&module.ast, Some(&module.path), context)?;
// if the procedure is still not in cache, then there was some error
if !self.proc_cache.borrow().contains_id(proc_id) {
return Err(AssemblyError::imported_proc_not_found_in_module(
proc_id,
&module.path,
));
}
}
Ok(())
}
// CODE BLOCK BUILDER
// --------------------------------------------------------------------------------------------
/// Returns the [CodeBlockTable] associated with the [AssemblyContext].
///
/// # Errors
/// Returns an error if a required procedure is not found in the [Assembler] procedure cache.
pub fn build_cb_table(
&self,
context: AssemblyContext,
) -> Result<CodeBlockTable, AssemblyError> {
context.into_cb_table(&self.proc_cache.borrow())
}
}
// BODY WRAPPER
// ================================================================================================
/// Contains a set of operations which need to be executed before and after a sequence of AST
/// nodes (i.e., code body).
struct BodyWrapper {
prologue: Vec<Operation>,
epilogue: Vec<Operation>,
}
// HELPER FUNCTIONS
// ================================================================================================
fn combine_blocks(mut blocks: Vec<CodeBlock>) -> CodeBlock {
debug_assert!(!blocks.is_empty(), "cannot combine empty block list");
// merge consecutive Span blocks.
let mut merged_blocks: Vec<CodeBlock> = Vec::with_capacity(blocks.len());
// Keep track of all the consecutive Span blocks and are merged together when
// there is a discontinuity.
let mut contiguous_spans: Vec<CodeBlock> = Vec::new();
blocks.drain(0..).for_each(|block| {
if block.is_span() {
contiguous_spans.push(block);
} else {
if !contiguous_spans.is_empty() {
merged_blocks.push(combine_spans(&mut contiguous_spans));
}
merged_blocks.push(block);
}
});
if !contiguous_spans.is_empty() {
merged_blocks.push(combine_spans(&mut contiguous_spans));
}
// build a binary tree of blocks joining them using JOIN blocks
let mut blocks = merged_blocks;
while blocks.len() > 1 {
let last_block = if blocks.len() % 2 == 0 { None } else { blocks.pop() };
let mut grouped_blocks = Vec::new();
core::mem::swap(&mut blocks, &mut grouped_blocks);
let mut grouped_blocks = group_vector_elements::<CodeBlock, 2>(grouped_blocks);
grouped_blocks.drain(0..).for_each(|pair| {
blocks.push(CodeBlock::new_join(pair));
});
if let Some(block) = last_block {
blocks.push(block);
}
}
debug_assert!(!blocks.is_empty(), "no blocks");
blocks.remove(0)
}
/// Combines a vector of SPAN blocks into a single SPAN block.
///
/// # Panics
/// Panics if any of the provided blocks is not a SPAN block.
fn combine_spans(spans: &mut Vec<CodeBlock>) -> CodeBlock {
if spans.len() == 1 {
return spans.remove(0);
}
let mut ops = Vec::<Operation>::new();
let mut decorators = DecoratorList::new();
spans.drain(0..).for_each(|block| {
if let CodeBlock::Span(span) = block {
for decorator in span.decorators() {
decorators.push((decorator.0 + ops.len(), decorator.1.clone()));
}
for batch in span.op_batches() {
ops.extend_from_slice(batch.ops());
}
} else {
panic!("CodeBlock was expected to be a Span Block, got {block:?}.");
}
});
CodeBlock::new_span_with_decorators(ops, decorators)
}
/// Builds a procedure ID based on the provided parameters.
///
/// Returns [ProcedureId] if `path` is provided, [None] otherwise.
fn build_procedure_id(
path: Option<&LibraryPath>,
proc: &NamedProcedure,
proc_index: usize,
) -> Option<ProcedureId> {
let mut proc_id = None;
if let Some(path) = path {
if proc.is_export() {
proc_id = Some(ProcedureId::from_name(proc.name(), path));
} else {
proc_id = Some(ProcedureId::from_index(proc_index as u16, path))
}
}
proc_id
}