miden_assembly/assembler/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
use alloc::{collections::BTreeMap, sync::Arc, vec::Vec};
use basic_block_builder::BasicBlockOrDecorators;
use mast_forest_builder::MastForestBuilder;
use module_graph::{ProcedureWrapper, WrappedModule};
use vm_core::{
crypto::hash::RpoDigest,
debuginfo::SourceSpan,
mast::{DecoratorId, MastNodeId},
DecoratorList, Felt, Kernel, Operation, Program,
};
use crate::{
ast::{self, Export, InvocationTarget, InvokeKind, ModuleKind, QualifiedProcedureName},
diagnostics::Report,
library::{KernelLibrary, Library},
sema::SemanticAnalysisError,
AssemblyError, Compile, CompileOptions, LibraryNamespace, LibraryPath, SourceManager, Spanned,
};
mod basic_block_builder;
mod id;
mod instruction;
mod mast_forest_builder;
mod module_graph;
mod procedure;
#[cfg(test)]
mod tests;
#[cfg(test)]
mod mast_forest_merger_tests;
use self::{
basic_block_builder::BasicBlockBuilder,
module_graph::{CallerInfo, ModuleGraph, ResolvedTarget},
};
pub use self::{
id::{GlobalProcedureIndex, ModuleIndex},
procedure::{Procedure, ProcedureContext},
};
// ASSEMBLER
// ================================================================================================
/// The [Assembler] is the primary interface for compiling Miden Assembly to the Miden Abstract
/// Syntax Tree (MAST).
///
/// # Usage
///
/// Depending on your needs, there are multiple ways of using the assembler, and whether or not you
/// want to provide a custom kernel.
///
/// <div class="warning">
/// Programs compiled with an empty kernel cannot use the `syscall` instruction.
/// </div>
///
/// * If you have a single executable module you want to compile, just call
/// [Assembler::assemble_program].
/// * If you want to link your executable to a few other modules that implement supporting
/// procedures, build the assembler with them first, using the various builder methods on
/// [Assembler], e.g. [Assembler::with_module], [Assembler::with_library], etc. Then, call
/// [Assembler::assemble_program] to get your compiled program.
#[derive(Clone)]
pub struct Assembler {
/// The source manager to use for compilation and source location information
source_manager: Arc<dyn SourceManager>,
/// The global [ModuleGraph] for this assembler.
module_graph: ModuleGraph,
/// Whether to treat warning diagnostics as errors
warnings_as_errors: bool,
/// Whether the assembler enables extra debugging information.
in_debug_mode: bool,
}
impl Default for Assembler {
fn default() -> Self {
let source_manager = Arc::new(crate::DefaultSourceManager::default());
let module_graph = ModuleGraph::new(source_manager.clone());
Self {
source_manager,
module_graph,
warnings_as_errors: false,
in_debug_mode: false,
}
}
}
// ------------------------------------------------------------------------------------------------
/// Constructors
impl Assembler {
/// Start building an [Assembler]
pub fn new(source_manager: Arc<dyn SourceManager>) -> Self {
let module_graph = ModuleGraph::new(source_manager.clone());
Self {
source_manager,
module_graph,
warnings_as_errors: false,
in_debug_mode: false,
}
}
/// Start building an [`Assembler`] with a kernel defined by the provided [KernelLibrary].
pub fn with_kernel(source_manager: Arc<dyn SourceManager>, kernel_lib: KernelLibrary) -> Self {
let (kernel, kernel_module, _) = kernel_lib.into_parts();
let module_graph = ModuleGraph::with_kernel(source_manager.clone(), kernel, kernel_module);
Self {
source_manager,
module_graph,
..Default::default()
}
}
/// Sets the default behavior of this assembler with regard to warning diagnostics.
///
/// When true, any warning diagnostics that are emitted will be promoted to errors.
pub fn with_warnings_as_errors(mut self, yes: bool) -> Self {
self.warnings_as_errors = yes;
self
}
/// Puts the assembler into the debug mode.
pub fn with_debug_mode(mut self, yes: bool) -> Self {
self.in_debug_mode = yes;
self
}
/// Sets the debug mode flag of the assembler
pub fn set_debug_mode(&mut self, yes: bool) {
self.in_debug_mode = yes;
}
/// Adds `module` to the module graph of the assembler.
///
/// The given module must be a library module, or an error will be returned.
#[inline]
pub fn with_module(mut self, module: impl Compile) -> Result<Self, Report> {
self.add_module(module)?;
Ok(self)
}
/// Adds `module` to the module graph of the assembler with the given options.
///
/// The given module must be a library module, or an error will be returned.
#[inline]
pub fn with_module_and_options(
mut self,
module: impl Compile,
options: CompileOptions,
) -> Result<Self, Report> {
self.add_module_with_options(module, options)?;
Ok(self)
}
/// Adds `module` to the module graph of the assembler.
///
/// The given module must be a library module, or an error will be returned.
#[inline]
pub fn add_module(&mut self, module: impl Compile) -> Result<(), Report> {
self.add_module_with_options(module, CompileOptions::for_library())
}
/// Adds `module` to the module graph of the assembler, using the provided options.
///
/// The given module must be a library or kernel module, or an error will be returned
pub fn add_module_with_options(
&mut self,
module: impl Compile,
options: CompileOptions,
) -> Result<(), Report> {
let kind = options.kind;
if kind != ModuleKind::Library {
return Err(Report::msg(
"only library modules are supported by `add_module_with_options`",
));
}
let module = module.compile_with_options(&self.source_manager, options)?;
assert_eq!(module.kind(), kind, "expected module kind to match compilation options");
self.module_graph.add_ast_module(module)?;
Ok(())
}
/// Adds all modules (defined by ".masm" files) from the specified directory to the module
/// of this assembler graph.
///
/// The modules will be added under the specified namespace, but otherwise preserving the
/// structure of the directory. Any module named `mod.masm` will be added using parent
/// directory path For example, if `namespace` = "ns", modules from the ~/masm directory
/// will be added as follows:
///
/// - ~/masm/foo.masm -> "ns::foo"
/// - ~/masm/bar/mod.masm -> "ns::bar"
/// - ~/masm/bar/baz.masm -> "ns::bar::baz"
#[cfg(feature = "std")]
pub fn add_modules_from_dir(
&mut self,
namespace: crate::LibraryNamespace,
dir: &std::path::Path,
) -> Result<(), Report> {
for module in crate::parser::read_modules_from_dir(namespace, dir, &self.source_manager)? {
self.module_graph.add_ast_module(module)?;
}
Ok(())
}
/// Adds the compiled library to provide modules for the compilation.
///
/// We only current support adding non-vendored libraries - that is, the source code of exported
/// procedures is not included in the program that compiles against the library. The library's
/// source code is instead expected to be loaded in the processor at execution time. Hence, all
/// calls to library procedures will be compiled down to a [`vm_core::mast::ExternalNode`] (i.e.
/// a reference to the procedure's MAST root). This means that when executing a program compiled
/// against a library, the processor will not be able to differentiate procedures with the same
/// MAST root but different decorators.
///
/// Hence, it is not recommended to export two procedures that have the same MAST root (i.e. are
/// identical except for their decorators). Note however that we don't expect this scenario to
/// be frequent in practice. For example, this could occur when APIs are being renamed and/or
/// moved between modules, and for some deprecation period, the same is exported under both its
/// old and new paths. Or possibly with common small functions that are implemented by the main
/// program and one of its dependencies.
pub fn add_library(&mut self, library: impl AsRef<Library>) -> Result<(), Report> {
self.module_graph
.add_compiled_modules(library.as_ref().module_infos())
.map_err(Report::from)?;
Ok(())
}
/// Adds the compiled library to provide modules for the compilation.
///
/// See [`Self::add_library`] for more detailed information.
pub fn with_library(mut self, library: impl AsRef<Library>) -> Result<Self, Report> {
self.add_library(library)?;
Ok(self)
}
}
// ------------------------------------------------------------------------------------------------
/// Public Accessors
impl Assembler {
/// Returns true if this assembler promotes warning diagnostics as errors by default.
pub fn warnings_as_errors(&self) -> bool {
self.warnings_as_errors
}
/// Returns true if this assembler was instantiated in debug mode.
pub fn in_debug_mode(&self) -> bool {
self.in_debug_mode
}
/// Returns a reference to the kernel for this assembler.
///
/// If the assembler was instantiated without a kernel, the internal kernel will be empty.
pub fn kernel(&self) -> &Kernel {
self.module_graph.kernel()
}
/// Returns a link to the source manager used by this assembler.
pub fn source_manager(&self) -> Arc<dyn SourceManager> {
self.source_manager.clone()
}
#[cfg(any(test, feature = "testing"))]
#[doc(hidden)]
pub fn module_graph(&self) -> &ModuleGraph {
&self.module_graph
}
}
// ------------------------------------------------------------------------------------------------
/// Compilation/Assembly
impl Assembler {
/// Assembles a set of modules into a [Library].
///
/// # Errors
///
/// Returns an error if parsing or compilation of the specified modules fails.
pub fn assemble_library(
mut self,
modules: impl IntoIterator<Item = impl Compile>,
) -> Result<Library, Report> {
let ast_module_indices =
modules.into_iter().try_fold(Vec::default(), |mut acc, module| {
module
.compile_with_options(&self.source_manager, CompileOptions::for_library())
.and_then(|module| {
self.module_graph.add_ast_module(module).map_err(Report::from)
})
.map(move |module_id| {
acc.push(module_id);
acc
})
})?;
self.module_graph.recompute()?;
let mut mast_forest_builder = MastForestBuilder::default();
let mut exports = {
let mut exports = BTreeMap::new();
for module_idx in ast_module_indices {
// Note: it is safe to use `unwrap_ast()` here, since all of the modules contained
// in `ast_module_indices` are in AST form by definition.
let ast_module = self.module_graph[module_idx].unwrap_ast().clone();
for (proc_idx, fqn) in ast_module.exported_procedures() {
let gid = module_idx + proc_idx;
self.compile_subgraph(gid, &mut mast_forest_builder)?;
let proc_root_node_id = mast_forest_builder
.get_procedure(gid)
.expect("compilation succeeded but root not found in cache")
.body_node_id();
exports.insert(fqn, proc_root_node_id);
}
}
exports
};
// TODO: show a warning if library exports are empty?
let (mast_forest, id_remappings) = mast_forest_builder.build();
if let Some(id_remappings) = id_remappings {
for (_proc_name, node_id) in exports.iter_mut() {
if let Some(&new_node_id) = id_remappings.get(node_id) {
*node_id = new_node_id;
}
}
}
Ok(Library::new(mast_forest.into(), exports)?)
}
/// Assembles the provided module into a [KernelLibrary] intended to be used as a Kernel.
///
/// # Errors
///
/// Returns an error if parsing or compilation of the specified modules fails.
pub fn assemble_kernel(mut self, module: impl Compile) -> Result<KernelLibrary, Report> {
let options = CompileOptions {
kind: ModuleKind::Kernel,
warnings_as_errors: self.warnings_as_errors,
path: Some(LibraryPath::from(LibraryNamespace::Kernel)),
};
let module = module.compile_with_options(&self.source_manager, options)?;
let module_idx = self.module_graph.add_ast_module(module)?;
self.module_graph.recompute()?;
let mut mast_forest_builder = MastForestBuilder::default();
// Note: it is safe to use `unwrap_ast()` here, since all modules looped over are
// AST (we just added them to the module graph)
let ast_module = self.module_graph[module_idx].unwrap_ast().clone();
let mut exports = ast_module
.exported_procedures()
.map(|(proc_idx, fqn)| {
let gid = module_idx + proc_idx;
self.compile_subgraph(gid, &mut mast_forest_builder)?;
let proc_root_node_id = mast_forest_builder
.get_procedure(gid)
.expect("compilation succeeded but root not found in cache")
.body_node_id();
Ok((fqn, proc_root_node_id))
})
.collect::<Result<BTreeMap<_, _>, Report>>()?;
// TODO: show a warning if library exports are empty?
let (mast_forest, id_remappings) = mast_forest_builder.build();
if let Some(id_remappings) = id_remappings {
for (_proc_name, node_id) in exports.iter_mut() {
if let Some(&new_node_id) = id_remappings.get(node_id) {
*node_id = new_node_id;
}
}
}
let library = Library::new(mast_forest.into(), exports)?;
Ok(library.try_into()?)
}
/// Compiles the provided module into a [`Program`]. The resulting program can be executed on
/// Miden VM.
///
/// # Errors
///
/// Returns an error if parsing or compilation of the specified program fails, or if the source
/// doesn't have an entrypoint.
pub fn assemble_program(mut self, source: impl Compile) -> Result<Program, Report> {
let options = CompileOptions {
kind: ModuleKind::Executable,
warnings_as_errors: self.warnings_as_errors,
path: Some(LibraryPath::from(LibraryNamespace::Exec)),
};
let program = source.compile_with_options(&self.source_manager, options)?;
assert!(program.is_executable());
// Recompute graph with executable module, and start compiling
let ast_module_index = self.module_graph.add_ast_module(program)?;
self.module_graph.recompute()?;
// Find the executable entrypoint Note: it is safe to use `unwrap_ast()` here, since this is
// the module we just added, which is in AST representation.
let entrypoint = self.module_graph[ast_module_index]
.unwrap_ast()
.index_of(|p| p.is_main())
.map(|index| GlobalProcedureIndex { module: ast_module_index, index })
.ok_or(SemanticAnalysisError::MissingEntrypoint)?;
// Compile the module graph rooted at the entrypoint
let mut mast_forest_builder = MastForestBuilder::default();
self.compile_subgraph(entrypoint, &mut mast_forest_builder)?;
let entry_node_id = mast_forest_builder
.get_procedure(entrypoint)
.expect("compilation succeeded but root not found in cache")
.body_node_id();
// in case the node IDs changed, update the entrypoint ID to the new value
let (mast_forest, id_remappings) = mast_forest_builder.build();
let entry_node_id = id_remappings
.map(|id_remappings| id_remappings[&entry_node_id])
.unwrap_or(entry_node_id);
Ok(Program::with_kernel(
mast_forest.into(),
entry_node_id,
self.module_graph.kernel().clone(),
))
}
/// Compile the uncompiled procedure in the module graph which are members of the subgraph
/// rooted at `root`, placing them in the MAST forest builder once compiled.
///
/// Returns an error if any of the provided Miden Assembly is invalid.
fn compile_subgraph(
&mut self,
root: GlobalProcedureIndex,
mast_forest_builder: &mut MastForestBuilder,
) -> Result<(), Report> {
let mut worklist: Vec<GlobalProcedureIndex> = self
.module_graph
.topological_sort_from_root(root)
.map_err(|cycle| {
let iter = cycle.into_node_ids();
let mut nodes = Vec::with_capacity(iter.len());
for node in iter {
let module = self.module_graph[node.module].path();
let proc = self.module_graph.get_procedure_unsafe(node);
nodes.push(format!("{}::{}", module, proc.name()));
}
AssemblyError::Cycle { nodes }
})?
.into_iter()
.filter(|&gid| self.module_graph.get_procedure_unsafe(gid).is_ast())
.collect();
assert!(!worklist.is_empty());
self.process_graph_worklist(&mut worklist, mast_forest_builder)
}
/// Compiles all procedures in the `worklist`.
fn process_graph_worklist(
&mut self,
worklist: &mut Vec<GlobalProcedureIndex>,
mast_forest_builder: &mut MastForestBuilder,
) -> Result<(), Report> {
// Process the topological ordering in reverse order (bottom-up), so that
// each procedure is compiled with all of its dependencies fully compiled
while let Some(procedure_gid) = worklist.pop() {
// If we have already compiled this procedure, do not recompile
if let Some(proc) = mast_forest_builder.get_procedure(procedure_gid) {
self.module_graph.register_procedure_root(procedure_gid, proc.mast_root())?;
continue;
}
// Fetch procedure metadata from the graph
let module = match &self.module_graph[procedure_gid.module] {
WrappedModule::Ast(ast_module) => ast_module,
// Note: if the containing module is in `Info` representation, there is nothing to
// compile.
WrappedModule::Info(_) => continue,
};
let export = &module[procedure_gid.index];
match export {
Export::Procedure(proc) => {
let num_locals = proc.num_locals();
let name = QualifiedProcedureName {
span: proc.span(),
module: module.path().clone(),
name: proc.name().clone(),
};
let pctx = ProcedureContext::new(
procedure_gid,
name,
proc.visibility(),
module.is_kernel(),
self.source_manager.clone(),
)
.with_num_locals(num_locals)
.with_span(proc.span());
// Compile this procedure
let procedure = self.compile_procedure(pctx, mast_forest_builder)?;
// TODO: if a re-exported procedure with the same MAST root had been previously
// added to the builder, this will result in unreachable nodes added to the
// MAST forest. This is because while we won't insert a duplicate node for the
// procedure body node itself, all nodes that make up the procedure body would
// be added to the forest.
// Cache the compiled procedure
self.module_graph
.register_procedure_root(procedure_gid, procedure.mast_root())?;
mast_forest_builder.insert_procedure(procedure_gid, procedure)?;
},
Export::Alias(proc_alias) => {
let name = QualifiedProcedureName {
span: proc_alias.span(),
module: module.path().clone(),
name: proc_alias.name().clone(),
};
let pctx = ProcedureContext::new(
procedure_gid,
name,
ast::Visibility::Public,
module.is_kernel(),
self.source_manager.clone(),
)
.with_span(proc_alias.span());
let proc_node_id = self.resolve_target(
InvokeKind::ProcRef,
&proc_alias.target().into(),
&pctx,
mast_forest_builder,
)?;
let proc_mast_root =
mast_forest_builder.get_mast_node(proc_node_id).unwrap().digest();
let procedure = pctx.into_procedure(proc_mast_root, proc_node_id);
// Make the MAST root available to all dependents
self.module_graph.register_procedure_root(procedure_gid, proc_mast_root)?;
mast_forest_builder.insert_procedure(procedure_gid, procedure)?;
},
}
}
Ok(())
}
/// Compiles a single Miden Assembly procedure to its MAST representation.
fn compile_procedure(
&self,
mut proc_ctx: ProcedureContext,
mast_forest_builder: &mut MastForestBuilder,
) -> Result<Procedure, Report> {
// Make sure the current procedure context is available during codegen
let gid = proc_ctx.id();
let num_locals = proc_ctx.num_locals();
let wrapper_proc = self.module_graph.get_procedure_unsafe(gid);
let proc = wrapper_proc.unwrap_ast().unwrap_procedure();
let proc_body_id = if num_locals > 0 {
// for procedures with locals, we need to update fmp register before and after the
// procedure body is executed. specifically:
// - to allocate procedure locals we need to increment fmp by the number of locals
// - to deallocate procedure locals we need to decrement it by the same amount
let num_locals = Felt::from(num_locals);
let wrapper = BodyWrapper {
prologue: vec![Operation::Push(num_locals), Operation::FmpUpdate],
epilogue: vec![Operation::Push(-num_locals), Operation::FmpUpdate],
};
self.compile_body(proc.iter(), &mut proc_ctx, Some(wrapper), mast_forest_builder)?
} else {
self.compile_body(proc.iter(), &mut proc_ctx, None, mast_forest_builder)?
};
let proc_body_node = mast_forest_builder
.get_mast_node(proc_body_id)
.expect("no MAST node for compiled procedure");
Ok(proc_ctx.into_procedure(proc_body_node.digest(), proc_body_id))
}
fn compile_body<'a, I>(
&self,
body: I,
proc_ctx: &mut ProcedureContext,
wrapper: Option<BodyWrapper>,
mast_forest_builder: &mut MastForestBuilder,
) -> Result<MastNodeId, Report>
where
I: Iterator<Item = &'a ast::Op>,
{
use ast::Op;
let mut body_node_ids: Vec<MastNodeId> = Vec::new();
let mut block_builder = BasicBlockBuilder::new(wrapper, mast_forest_builder);
for op in body {
match op {
Op::Inst(inst) => {
if let Some(node_id) =
self.compile_instruction(inst, &mut block_builder, proc_ctx)?
{
if let Some(basic_block_id) = block_builder.make_basic_block()? {
body_node_ids.push(basic_block_id);
} else if let Some(decorator_ids) = block_builder.drain_decorators() {
block_builder
.mast_forest_builder_mut()
.set_before_enter(node_id, decorator_ids);
}
body_node_ids.push(node_id);
}
},
Op::If { then_blk, else_blk, .. } => {
if let Some(basic_block_id) = block_builder.make_basic_block()? {
body_node_ids.push(basic_block_id);
}
let then_blk = self.compile_body(
then_blk.iter(),
proc_ctx,
None,
block_builder.mast_forest_builder_mut(),
)?;
let else_blk = self.compile_body(
else_blk.iter(),
proc_ctx,
None,
block_builder.mast_forest_builder_mut(),
)?;
let split_node_id =
block_builder.mast_forest_builder_mut().ensure_split(then_blk, else_blk)?;
if let Some(decorator_ids) = block_builder.drain_decorators() {
block_builder
.mast_forest_builder_mut()
.set_before_enter(split_node_id, decorator_ids)
}
body_node_ids.push(split_node_id);
},
Op::Repeat { count, body, .. } => {
if let Some(basic_block_id) = block_builder.make_basic_block()? {
body_node_ids.push(basic_block_id);
}
let repeat_node_id = self.compile_body(
body.iter(),
proc_ctx,
None,
block_builder.mast_forest_builder_mut(),
)?;
if let Some(decorator_ids) = block_builder.drain_decorators() {
// Attach the decorators before the first instance of the repeated node
let mut first_repeat_node =
block_builder.mast_forest_builder_mut()[repeat_node_id].clone();
first_repeat_node.set_before_enter(decorator_ids);
let first_repeat_node_id = block_builder
.mast_forest_builder_mut()
.ensure_node(first_repeat_node)?;
body_node_ids.push(first_repeat_node_id);
for _ in 0..(*count - 1) {
body_node_ids.push(repeat_node_id);
}
} else {
for _ in 0..*count {
body_node_ids.push(repeat_node_id);
}
}
},
Op::While { body, .. } => {
if let Some(basic_block_id) = block_builder.make_basic_block()? {
body_node_ids.push(basic_block_id);
}
let loop_node_id = {
let loop_body_node_id = self.compile_body(
body.iter(),
proc_ctx,
None,
block_builder.mast_forest_builder_mut(),
)?;
block_builder.mast_forest_builder_mut().ensure_loop(loop_body_node_id)?
};
if let Some(decorator_ids) = block_builder.drain_decorators() {
block_builder
.mast_forest_builder_mut()
.set_before_enter(loop_node_id, decorator_ids)
}
body_node_ids.push(loop_node_id);
},
}
}
let maybe_post_decorators: Option<Vec<DecoratorId>> =
match block_builder.try_into_basic_block()? {
BasicBlockOrDecorators::BasicBlock(basic_block_id) => {
body_node_ids.push(basic_block_id);
None
},
BasicBlockOrDecorators::Decorators(decorator_ids) => {
// the procedure body ends with a list of decorators
Some(decorator_ids)
},
BasicBlockOrDecorators::Nothing => None,
};
let procedure_body_id = if body_node_ids.is_empty() {
// We cannot allow only decorators in a procedure body, since decorators don't change
// the MAST digest of a node. Hence, two empty procedures with different decorators
// would look the same to the `MastForestBuilder`.
if maybe_post_decorators.is_some() {
return Err(AssemblyError::EmptyProcedureBodyWithDecorators {
span: proc_ctx.span(),
source_file: proc_ctx.source_manager().get(proc_ctx.span().source_id()).ok(),
})?;
}
mast_forest_builder.ensure_block(vec![Operation::Noop], None)?
} else {
mast_forest_builder.join_nodes(body_node_ids)?
};
// Make sure that any post decorators are added at the end of the procedure body
if let Some(post_decorator_ids) = maybe_post_decorators {
mast_forest_builder.set_after_exit(procedure_body_id, post_decorator_ids);
}
Ok(procedure_body_id)
}
/// Resolves the specified target to the corresponding procedure root [`MastNodeId`].
///
/// If no [`MastNodeId`] exists for that procedure root, we wrap the root in an
/// [`crate::mast::ExternalNode`], and return the resulting [`MastNodeId`].
pub(super) fn resolve_target(
&self,
kind: InvokeKind,
target: &InvocationTarget,
proc_ctx: &ProcedureContext,
mast_forest_builder: &mut MastForestBuilder,
) -> Result<MastNodeId, AssemblyError> {
let caller = CallerInfo {
span: target.span(),
module: proc_ctx.id().module,
kind,
};
let resolved = self.module_graph.resolve_target(&caller, target)?;
match resolved {
ResolvedTarget::Phantom(mast_root) => self.ensure_valid_procedure_mast_root(
kind,
target.span(),
mast_root,
mast_forest_builder,
),
ResolvedTarget::Exact { gid } | ResolvedTarget::Resolved { gid, .. } => {
match mast_forest_builder.get_procedure(gid) {
Some(proc) => Ok(proc.body_node_id()),
// We didn't find the procedure in our current MAST forest. We still need to
// check if it exists in one of a library dependency.
None => match self.module_graph.get_procedure_unsafe(gid) {
ProcedureWrapper::Info(p) => self.ensure_valid_procedure_mast_root(
kind,
target.span(),
p.digest,
mast_forest_builder,
)
,
ProcedureWrapper::Ast(_) => panic!("AST procedure {gid:?} exits in the module graph but not in the MastForestBuilder"),
},
}
},
}
}
/// Verifies the validity of the MAST root as a procedure root hash, and returns the ID of the
/// [`core::mast::ExternalNode`] that wraps it.
fn ensure_valid_procedure_mast_root(
&self,
kind: InvokeKind,
span: SourceSpan,
mast_root: RpoDigest,
mast_forest_builder: &mut MastForestBuilder,
) -> Result<MastNodeId, AssemblyError> {
// Get the procedure from the assembler
let current_source_file = self.source_manager.get(span.source_id()).ok();
// If the procedure is cached and is a system call, ensure that the call is valid.
match mast_forest_builder.find_procedure_by_mast_root(&mast_root) {
Some(proc) if matches!(kind, InvokeKind::SysCall) => {
// Verify if this is a syscall, that the callee is a kernel procedure
//
// NOTE: The assembler is expected to know the full set of all kernel
// procedures at this point, so if we can't identify the callee as a
// kernel procedure, it is a definite error.
if !proc.visibility().is_syscall() {
return Err(AssemblyError::InvalidSysCallTarget {
span,
source_file: current_source_file,
callee: proc.fully_qualified_name().clone(),
});
}
let maybe_kernel_path = proc.path();
self.module_graph
.find_module(maybe_kernel_path)
.ok_or_else(|| AssemblyError::InvalidSysCallTarget {
span,
source_file: current_source_file.clone(),
callee: proc.fully_qualified_name().clone(),
})
.and_then(|module| {
// Note: this module is guaranteed to be of AST variant, since we have the
// AST of a procedure contained in it (i.e. `proc`). Hence, it must be that
// the entire module is in AST representation as well.
if module.unwrap_ast().is_kernel() {
Ok(())
} else {
Err(AssemblyError::InvalidSysCallTarget {
span,
source_file: current_source_file.clone(),
callee: proc.fully_qualified_name().clone(),
})
}
})?;
},
Some(_) | None => (),
}
mast_forest_builder.ensure_external(mast_root)
}
}
// HELPERS
// ================================================================================================
/// Contains a set of operations which need to be executed before and after a sequence of AST
/// nodes (i.e., code body).
struct BodyWrapper {
prologue: Vec<Operation>,
epilogue: Vec<Operation>,
}