1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
use vm_core::{
opcodes::{OpHint, UserOps as OpCode},
program::{
blocks::{Group, Loop, ProgramBlock, Span, Switch},
Program,
},
BaseElement, FieldElement, StarkField, BASE_CYCLE_LENGTH,
};
use winter_utils::collections::BTreeMap;
mod parsers;
use parsers::*;
mod errors;
pub use errors::AssemblyError;
#[cfg(test)]
mod tests;
type HintMap = BTreeMap<usize, OpHint>;
pub fn compile(source: &str) -> Result<Program, AssemblyError> {
let tokens: Vec<&str> = source.split_whitespace().collect();
if tokens.is_empty() {
return Err(AssemblyError::empty_program());
} else if tokens[0] != "begin" {
return Err(AssemblyError::invalid_program_start(tokens[0]));
} else if tokens[tokens.len() - 1] != "end" {
return Err(AssemblyError::invalid_program_end(tokens[tokens.len() - 1]));
}
let mut root_blocks = Vec::new();
let i = parse_branch(&mut root_blocks, &tokens, 0)?;
let root = Group::new(root_blocks);
if i < tokens.len() - 1 {
return Err(AssemblyError::dangling_instructions(i));
}
Ok(Program::new(root))
}
fn parse_block(
parent: &mut Vec<ProgramBlock>,
tokens: &[&str],
mut i: usize,
) -> Result<usize, AssemblyError> {
let head: Vec<&str> = tokens[i].split('.').collect();
match head[0] {
"block" => {
if head.len() > 1 {
return Err(AssemblyError::invalid_block_head(&head, i));
}
let mut body = Vec::new();
i = parse_branch(&mut body, tokens, i)?;
parent.push(Group::new_block(body));
Ok(i + 1)
}
"if" => {
if head.len() == 1 || head[1] != "true" {
return Err(AssemblyError::invalid_block_head(&head, i));
}
let mut t_branch = Vec::new();
i = parse_branch(&mut t_branch, tokens, i)?;
let mut f_branch = Vec::new();
if tokens[i] == "else" {
i = parse_branch(&mut f_branch, tokens, i)?;
} else {
f_branch.push(Span::new_block(vec![
OpCode::Not,
OpCode::Assert,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
OpCode::Noop,
]));
}
parent.push(Switch::new_block(t_branch, f_branch));
Ok(i + 1)
}
"repeat" => {
let num_iterations = read_param(&head, i)? as usize;
if num_iterations < 2 {
return Err(AssemblyError::invalid_num_iterations(&head, i));
}
let mut body_template = Vec::new();
i = parse_branch(&mut body_template, tokens, i)?;
let body = repeat_block_sequence(body_template, num_iterations);
parent.push(Group::new_block(body));
Ok(i + 1)
}
"while" => {
if head.len() == 1 || head[1] != "true" {
return Err(AssemblyError::invalid_block_head(&head, i));
}
let mut body = Vec::new();
i = parse_branch(&mut body, tokens, i)?;
parent.push(Loop::new_block(body));
Ok(i + 1)
}
_ => Err(AssemblyError::invalid_block_head(&head, i)),
}
}
fn parse_branch(
body: &mut Vec<ProgramBlock>,
tokens: &[&str],
mut i: usize,
) -> Result<usize, AssemblyError> {
let mut head: Vec<&str> = tokens[i].split('.').collect();
let mut op_codes: Vec<OpCode> = match head[0] {
"begin" => {
head[0] = "block";
vec![OpCode::Begin]
}
"block" => vec![],
"if" => vec![OpCode::Assert],
"else" => vec![OpCode::Not, OpCode::Assert],
"repeat" => vec![],
"while" => vec![OpCode::Assert],
_ => return Err(AssemblyError::invalid_block_head(&head, i)),
};
let mut op_hints: HintMap = BTreeMap::new();
let first_step = i;
i += 1;
while i < tokens.len() {
let op: Vec<&str> = tokens[i].split('.').collect();
i = match op[0] {
"block" | "if" | "repeat" | "while" => {
let force_span = body.is_empty();
add_span(body, &mut op_codes, &mut op_hints, force_span);
parse_block(body, tokens, i)?
}
"else" => {
if head[0] != "if" {
return Err(AssemblyError::dangling_else(i));
} else if i - first_step < 2 {
return Err(AssemblyError::empty_block(&head, first_step));
}
add_span(body, &mut op_codes, &mut op_hints, false);
return Ok(i);
}
"end" => {
if i - first_step < 2 {
return Err(AssemblyError::empty_block(&head, first_step));
}
add_span(body, &mut op_codes, &mut op_hints, false);
return Ok(i);
}
_ => parse_op_token(op, &mut op_codes, &mut op_hints, i)?,
};
}
match head[0] {
"block" => Err(AssemblyError::unmatched_block(first_step)),
"if" => Err(AssemblyError::unmatched_if(first_step)),
"else" => Err(AssemblyError::unmatched_else(first_step)),
"repeat" => Err(AssemblyError::unmatched_repeat(first_step, &head)),
"while" => Err(AssemblyError::unmatched_while(first_step)),
_ => Err(AssemblyError::invalid_block_head(&head, first_step)),
}
}
fn parse_op_token(
op: Vec<&str>,
op_codes: &mut Vec<OpCode>,
op_hints: &mut HintMap,
step: usize,
) -> Result<usize, AssemblyError> {
match op[0] {
"noop" => parse_noop(op_codes, &op, step),
"assert" => parse_assert(op_codes, &op, step),
"push" => parse_push(op_codes, op_hints, &op, step),
"read" => parse_read(op_codes, &op, step),
"dup" => parse_dup(op_codes, &op, step),
"pad" => parse_pad(op_codes, &op, step),
"pick" => parse_pick(op_codes, &op, step),
"drop" => parse_drop(op_codes, &op, step),
"swap" => parse_swap(op_codes, &op, step),
"roll" => parse_roll(op_codes, &op, step),
"add" => parse_add(op_codes, &op, step),
"sub" => parse_sub(op_codes, &op, step),
"mul" => parse_mul(op_codes, &op, step),
"div" => parse_div(op_codes, &op, step),
"neg" => parse_neg(op_codes, &op, step),
"inv" => parse_inv(op_codes, &op, step),
"not" => parse_not(op_codes, &op, step),
"and" => parse_and(op_codes, &op, step),
"or" => parse_or(op_codes, &op, step),
"eq" => parse_eq(op_codes, op_hints, &op, step),
"ne" => parse_ne(op_codes, op_hints, &op, step),
"gt" => parse_gt(op_codes, op_hints, &op, step),
"lt" => parse_lt(op_codes, op_hints, &op, step),
"rc" => parse_rc(op_codes, op_hints, &op, step),
"isodd" => parse_isodd(op_codes, op_hints, &op, step),
"choose" => parse_choose(op_codes, &op, step),
"hash" => parse_hash(op_codes, &op, step),
"smpath" => parse_smpath(op_codes, &op, step),
"pmpath" => parse_pmpath(op_codes, op_hints, &op, step),
_ => return Err(AssemblyError::invalid_op(&op, step)),
}?;
Ok(step + 1)
}
fn add_span(
body: &mut Vec<ProgramBlock>,
op_codes: &mut Vec<OpCode>,
op_hints: &mut HintMap,
force: bool,
) {
if op_codes.is_empty() && !force {
return;
};
let mut span_op_codes = op_codes.clone();
let pad_length = BASE_CYCLE_LENGTH - (span_op_codes.len() % BASE_CYCLE_LENGTH) - 1;
span_op_codes.resize(span_op_codes.len() + pad_length, OpCode::Noop);
body.push(ProgramBlock::Span(Span::new(
span_op_codes,
op_hints.clone(),
)));
op_codes.clear();
op_hints.clear();
}
fn repeat_block_sequence(template: Vec<ProgramBlock>, num_iterations: usize) -> Vec<ProgramBlock> {
let mut body = Vec::with_capacity(template.len() * num_iterations);
let last_idx = template.len() - 1;
if !template[last_idx].is_span() {
for _ in 0..num_iterations {
body.extend_from_slice(&template);
}
} else {
body.extend_from_slice(&template);
for _ in 1..num_iterations {
let last_idx = body.len() - 1;
body[last_idx] = merge_spans(&body[last_idx], &template[0]);
body.extend_from_slice(&template[1..]);
}
}
body
}
fn merge_spans(span1: &ProgramBlock, span2: &ProgramBlock) -> ProgramBlock {
match span1 {
ProgramBlock::Span(first_span) => match span2 {
ProgramBlock::Span(last_span) => ProgramBlock::Span(Span::merge(first_span, last_span)),
_ => panic!("span1 is not a Span block"),
},
_ => panic!("span2 is not a Span block"),
}
}
fn read_param(op: &[&str], step: usize) -> Result<u32, AssemblyError> {
if op.len() > 2 {
return Err(AssemblyError::extra_param(op, step));
}
let result = match op[1].parse::<u32>() {
Ok(i) => i,
Err(_) => return Err(AssemblyError::invalid_param(op, step)),
};
Ok(result)
}