1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
use microtensor::{prelude::*, Tensor, Variable};
struct DenseLayer {
weights: Variable<f32>,
bias: Variable<f32>,
}
impl DenseLayer {
pub fn new(input_size: usize, size: usize) -> Self {
Self {
weights: (Tensor::randn(&[input_size, size]) / size as f32).trained(),
bias: Tensor::zeros(&[size]).trained(),
}
}
pub fn run(&self, input: &Variable<f32>) -> Variable<f32> {
input.mm(&self.weights) + &self.bias
}
}
struct Perceptron {
hidden: DenseLayer,
output: DenseLayer,
}
impl Perceptron {
pub fn new(input_size: usize) -> Self {
Self {
hidden: DenseLayer::new(input_size, 16),
output: DenseLayer::new(16, 10),
}
}
pub fn run(&self, input: &Variable<f32>) -> Variable<f32> {
let t = self.hidden.run(input).relu();
self.output.run(&t).sigmoid()
}
}
fn main() {
let model = Perceptron::new(28 * 28);
let learning_rate = 0.01;
for _ in 0..100 {
let images = Tensor::ones(&[32, 28 * 28]);
let labels = (Tensor::rand(&[32]) * 10.0).cast::<u8>().one_hot(10);
let output = model.run(&images.tracked());
let loss = (&labels.tracked() - &output).sqr().mean(0);
loss.backward();
for mut param in loss.parameters() {
param -= param.grad().unwrap() * learning_rate
}
loss.reset();
}
}