1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
//! `micro_autotile` provides an implementation of the LDTK auto-tiling algorithm, for use in
//! programs at runtime. The representation is compatible with that saved by LDTK, meaning that
//! definitions can be loaded directly from LDTK JSON exports.
//!
//! Creating a single rule works like this:
//!
//! 1. Create a `TileMatcher` out of `TileStatus` entries.
//! * Tile Matchers are squares represented as fixed size flat arrays
//! * Currently only 1x1 and 3x3 matchers are supported, 5x5 matchers are incompatible
//! * Since a Tile Matcher is a rule, they are usually created statically or loaded as
//! an asset that will not change much / at all
//! 2. Create a `TileOutput` that represents the value produces by this rule when it matches
//! * An output value of `Skip` will cause the rule to be a noop. This has utility when combined
//! with a rule's `chance` value, as part of a set of rules
//! * A `Single` output will always produce the same value
//! * A `Random` output will produce one of the provided values at random
//! 3. Combine these into an `AutoTileRule`
//! * There are a number of convenience methods for doing this process without mistakes in a single function call
//!
//! To utilise your matcher, you'll need to provide a specifically formatted slice of your input data (typically a sub-grid
//! of a tile map). If you're matching a single tile, you can use the convenience method `TileLayout::single`, otherwise
//! you will need to provide a 9 element array that represents 3 rows and 3 columns of data, in the following format:
//!
//! ```text
//! Flat array data
//! [1, 2, 3, 4, 5, 6, 7, 8, 9]
//! ```
//!
//! ```text
//! Formatted in the way it would appear if laid out in a tile map
//! [
//! 1, 2, 3, # First row, all three columns
//! 4, 5, 6, # Second row, all three columns
//! 7, 8, 9, # Third row, all three columns
//! ]
//! ```
//!
//! As we can see, the fifth element of the array is the centre tile of our matching grid. In fact, `TileLayout::single` constructs
//! a 9 element array where the fifth element is `Some(your_value)`, and the rest are simply `None`. This is possible because the
//! actual data represents each element as an `Option` (not as the simple numbers above), which allows matching up against edges of
//! data arrays, or against non-regular shapes. Putting this together to match against data from our tile map, we have the following:
//!
//! e.g.
//! ```rust
//! # use micro_autotile::{AutoTileRule, TileLayout, TileOutput};
//! # fn main() {
//! use micro_autotile::TileMatcher;
//! // Tile maps often use unsigned integers to represent different types of tiles
//! const WALL_TILE: usize = 0;
//! const GROUND_TILE: usize = 1;
//!
//! // Match a 1x1 ground tile, output the index within the spritesheet that we'll use for rendering
//! let match_1_x_1 = AutoTileRule::exact(GROUND_TILE, 57);
//!
//! assert_eq!(
//! match_1_x_1.resolve_match(&TileLayout::single(GROUND_TILE)),
//! Some(57)
//! );
//!
//! // More realistically, we might have some tile data for a ground tile with other data arround it.
//! // When we match against a rule, we're always trying to produce a value for the _central_ value in
//! // our `TileLayout` (the fifth element)
//! let enclosed_ground = TileLayout([
//! Some(WALL_TILE), Some(WALL_TILE), Some(WALL_TILE),
//! Some(WALL_TILE), Some(GROUND_TILE), Some(WALL_TILE),
//! Some(WALL_TILE), Some(WALL_TILE), Some(WALL_TILE),
//! ]);
//!
//! assert_eq!(
//! match_1_x_1.resolve_match(&enclosed_ground),
//! Some(57)
//! );
//!
//! // There may also be situations in which you just want to know that a given layout matches a rule, without
//! // concern for producing a value for that layout. You can directly use a `TileMatcher` for this
//! assert!(TileMatcher::single(GROUND_TILE).matches(&enclosed_ground));
//! # }
//! ```
//!
//! There's already a lot of utility to these structures, but we still need to manually run a set of
//! rules against our maps and do some work with the `AutoTileRule::chance` property to figure out
//! what the final output should be for a given layout.
//!
//! Introducing the `AutoRuleSet` struct, that represents a sequence of rules that should be evaluated
//! to produce an output. It provides similar methods to the individual AutoTileRule, but will execute
//! against a set of rules at once. There are also convenience methods for combining AutoRuleSet
//! instances
//!
//! ```rust
//! # use micro_autotile::{AutoTileRule, AutoRuleSet, TileLayout, TileOutput};
//! # fn main() {
//! use micro_autotile::{TileMatcher, TileStatus};
//! const WALL_TILE: usize = 0;
//! const GROUND_TILE: usize = 1;
//! const OTHER_TILE: usize = 342;
//!
//! let wall_rules = AutoRuleSet(vec![
//! AutoTileRule::single_when(TileMatcher([ // Top Left Corner
//! TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! TileStatus::IsNot(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE),
//! TileStatus::IsNot(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE),
//! ]), 54),
//! AutoTileRule::single_when(TileMatcher([ // Top Right Corner
//! TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! ]), 55),
//! // ... Etc
//! ]);
//!
//! let ground_rules = AutoRuleSet(vec![
//! // Use decorated tiles in 10% of cases
//! AutoTileRule::single_any_chance(GROUND_TILE, vec![45, 46, 47], 0.1),
//! // Fall back to the basic tile if we don't match previously
//! AutoTileRule::exact(GROUND_TILE, 44),
//! ]);
//!
//! // Easily merge rule sets in an ordered way
//! let combined_rules = wall_rules + ground_rules;
//!
//! let sublayout = TileLayout([
//! Some(OTHER_TILE), Some(GROUND_TILE), Some(GROUND_TILE),
//! Some(WALL_TILE), Some(WALL_TILE), Some(OTHER_TILE),
//! Some(WALL_TILE), Some(WALL_TILE), Some(GROUND_TILE),
//! ]);
//!
//! // We've got a layout that represents the top right corner of a wall, the second rule in our
//! // set - the value of the tiles that match "IsNot(WALL_TILE)" are irrelevant, as long as they
//! // exist (Option::Some)
//! let output = combined_rules.resolve_match(&sublayout);
//! assert_eq!(output, Some(55));
//! # }
//! ```
use std::ops::Add;
/// Represents how a single tile location should be matched when evaluating a rule
#[derive(Ord, PartialOrd, Eq, PartialEq, Hash, Debug, Default, Copy, Clone)]
pub enum TileStatus {
/// This tile will always match, regardless of the input tile
#[default]
Ignore,
/// This tile will only match when there is no input tile (`None`)
Nothing,
/// This tile will always match as long as the tile exists (`Option::is_some`)
Anything,
/// This tile will match as long as the input tile exists and the input value is the same as this value
Is(usize),
/// This tile will match as long as the input tile exists and the input value is anything other than this value
IsNot(usize),
}
impl PartialEq<Option<usize>> for TileStatus {
fn eq(&self, other: &Option<usize>) -> bool {
match self {
Self::Ignore => true,
Self::Nothing => other.is_none(),
Self::Anything => other.is_some(),
Self::Is(value) => &Some(*value) == other,
Self::IsNot(value) => &Some(*value) != other,
}
}
}
impl TileStatus {
pub fn to_ldtk_value(&self) -> i64 {
match self {
Self::Ignore => 0,
Self::Nothing => -1000001,
Self::Anything => 1000001,
Self::Is(value) => *value as i64,
Self::IsNot(value) => -(*value as i64),
}
}
pub fn from_ldtk_value(value: i64) -> Self {
match value {
0 => Self::Ignore,
1000001 => Self::Anything,
-1000001 => Self::Nothing,
other => {
if other > 0 {
Self::Is(other as usize)
} else {
Self::IsNot(other.unsigned_abs() as usize)
}
}
}
}
}
/// Holds the evaluation rules for a 3x3 grid of tiles. A 1x1 grid of tile matchers
/// can be created by providing an array of `TileStatus` structs that are all `TileStatus::Ignore`,
/// except for the value in the fifth position
///
/// e.g.
///
/// ```
/// # use micro_autotile::{TileMatcher, TileStatus};
/// let matcher = TileMatcher([
/// TileStatus::Ignore, TileStatus::Ignore, TileStatus::Ignore,
/// TileStatus::Ignore, TileStatus::Anything, TileStatus::Ignore,
/// TileStatus::Ignore, TileStatus::Ignore, TileStatus::Ignore,
/// ]);
/// ```
#[derive(Clone, Debug, Default)]
#[repr(transparent)]
pub struct TileMatcher(pub [TileStatus; 9]);
impl TileMatcher {
/// Create a 1x1 matcher, where the target tile must be the supplied `value`
pub const fn single(value: usize) -> Self {
Self([
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Is(value),
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Ignore,
])
}
/// Create a 1x1 matcher, with any rule for the target tile
pub const fn single_match(value: TileStatus) -> Self {
Self([
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Ignore,
value,
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Ignore,
TileStatus::Ignore,
])
}
/// Check if the given input layout of tile data conforms to this matcher
pub fn matches(&self, layout: &TileLayout) -> bool {
self.0
.iter()
.zip(layout.0.iter())
.all(|(status, reality)| *status == *reality)
}
/// Load data from an LDTK JSON file. Currently supports 1x1 and 3x3 matchers.
/// Other sizes of matcher will result in `None`
pub fn from_ldtk_array(value: Vec<i64>) -> Option<Self> {
if value.len() == 1 {
let tile = value[0];
Some(Self::single_match(TileStatus::from_ldtk_value(tile)))
} else if value.len() == 9 {
Some(TileMatcher(
[
value[0], value[1], value[2], value[3], value[4], value[5], value[6], value[7],
value[8],
]
.map(TileStatus::from_ldtk_value),
))
} else {
None
}
}
}
/// Represents a grid of input data. What this data means is dependant on your application, and
/// could realistically correlate to anything. It is assumed to be a 3x3 slice of tile data from a
/// tile map
#[derive(Clone, Debug, Default)]
#[repr(transparent)]
pub struct TileLayout(pub [Option<usize>; 9]);
impl TileLayout {
/// Create a 1x1 grid of tile data
pub fn single(value: usize) -> Self {
TileLayout([None, None, None, None, Some(value), None, None, None, None])
}
/// Construct a filled 3x3 grid of tile data
pub fn filled(values: [usize; 9]) -> Self {
TileLayout(values.map(Some))
}
/// Construct a filled 3x3 grid of identical tile data
pub fn spread(value: usize) -> Self {
TileLayout([Some(value); 9])
}
/// Filter the layout data so that it only contains the tiles surrounding the target tile. The main
/// utility of this is to perform set operations on every tile _other_ than the target tile.
///
/// e.g.
///
/// ```
/// # use micro_autotile::TileLayout;
/// let layout = TileLayout::single(123);
/// let has_any_surrounding_tiles = layout.surrounding()
/// .iter()
/// .any(|tile| tile.is_some());
///
/// assert_eq!(has_any_surrounding_tiles, false);
/// ```
pub fn surrounding(&self) -> [Option<usize>; 8] {
[
self.0[0], self.0[1], self.0[2], self.0[3], self.0[5], self.0[6], self.0[7], self.0[8],
]
}
}
/// Represents the value produced when a rule is matched. Will need to be inspected to find out
/// the raw data value. This value will typically correspond to an index in a spritesheet, but
/// there is no proscribed meaning - it will be application dependant and could represent some
/// other index or meaning
#[derive(Clone, Debug, Default)]
pub enum TileOutput {
/// This output should be skipped. Noop equivalent
#[default]
Skip,
/// This exact value should be produces
Single(usize),
/// Some method should be used to select one of the values in this list
Random(Vec<usize>),
}
impl TileOutput {
/// Create an output that can produce the input value when this output is selected
pub const fn single(value: usize) -> Self {
TileOutput::Single(value)
}
/// Create an output that can produce any of these input values when this output is selected
pub const fn any(value: Vec<usize>) -> Self {
TileOutput::Random(value)
}
/// Produce the value this output represents. Will use a default randomly seeded RNG to
/// select from a list, if appropriate
#[cfg(feature = "impl_fastrand")]
pub fn resolve(&self) -> Option<usize> {
self.resolve_with(&fastrand::Rng::default())
}
/// Produce the value this output represents. Will use a default randomly seeded RNG to
/// select from a list, if appropriate
#[cfg(feature = "impl_fastrand")]
pub fn resolve_with(&self, rng: &fastrand::Rng) -> Option<usize> {
match self {
Self::Skip => None,
Self::Single(val) => Some(*val),
Self::Random(vals) => vals.get(rng.usize(0..vals.len())).copied(),
}
}
}
/// Checks tile layouts against a matcher instance, and uses the output to produce a value
#[derive(Clone, Debug, Default)]
pub struct AutoTileRule {
/// The pattern that this rule will use for matching
pub matcher: TileMatcher,
/// The value produced when this rule gets matched
pub output: TileOutput,
/// When used as part of a set of rules, this value (0.0 - 1.0) determines the chance that
/// a successful match will generate an output from this rule
pub chance: f32,
}
impl AutoTileRule {
/// Create a rule that will always produce `output_value` when the target tile matches
/// `input_value`
pub const fn exact(input_value: usize, output_value: usize) -> Self {
Self::exact_chance(input_value, output_value, 1.0)
}
/// Create a rule that will produce `output_value` when the target tile matches
/// `input_value` and the selection chance is rolled under the value of `chance` (0.0 to 1.0)
pub const fn exact_chance(input_value: usize, output_value: usize, chance: f32) -> Self {
AutoTileRule {
matcher: TileMatcher::single(input_value),
output: TileOutput::single(output_value),
chance,
}
}
/// Create a rule that will always produce `output_value` when `matcher` evaluates to
/// `true`
pub const fn single_when(matcher: TileMatcher, output_value: usize) -> Self {
AutoTileRule {
matcher,
output: TileOutput::single(output_value),
chance: 1.0,
}
}
/// Create a rule that will always produce one of the values contained in `output_value`
/// when the target tile matches `input_value`
pub const fn single_any(input_value: usize, output_value: Vec<usize>) -> Self {
Self::single_any_chance(input_value, output_value, 1.0)
}
/// Create a rule that will produce one of the values contained in `output_value`
/// when the target tile matches `input_value` and the selection chacne is rolled under the
/// value of `chance` (0.0 to 1.0)
pub const fn single_any_chance(
input_value: usize,
output_value: Vec<usize>,
chance: f32,
) -> Self {
AutoTileRule {
matcher: TileMatcher::single(input_value),
output: TileOutput::any(output_value),
chance,
}
}
/// Create a rule that will produce one of the values contained in `output_value`
/// when when `matcher` evaluates to `true` and the selection chacne is rolled under
/// the value of `chance` (0.0 to 1.0)
pub const fn any_any_chance(
input_value: TileMatcher,
output_value: Vec<usize>,
chance: f32,
) -> Self {
AutoTileRule {
matcher: input_value,
output: TileOutput::any(output_value),
chance,
}
}
/// Evaluate this rule and return the unresolved output value. "None" represents either no
/// match or a match that failed its chance roll.
///
/// Will use a default randomly seeded RNG to evaluate the chance roll for this rule
#[cfg(feature = "impl_fastrand")]
pub fn get_match(&self, input: &TileLayout) -> Option<&TileOutput> {
let chance = fastrand::f32();
if chance <= self.chance && self.matcher.matches(input) {
Some(&self.output)
} else {
None
}
}
/// Evaluate this rule and return the unresolved output value. "None" represents either no
/// match or a match that failed its chance roll.
///
/// Will use the provided RNG to evaluate the chance roll for this rule
#[cfg(feature = "impl_fastrand")]
pub fn get_match_seeded(
&self,
input: &TileLayout,
seeded: &fastrand::Rng,
) -> Option<&TileOutput> {
let chance = seeded.f32();
if chance <= self.chance && self.matcher.matches(input) {
Some(&self.output)
} else {
None
}
}
/// Evaluate this rule and produce an output, if a match is found. "None" represents either
/// no match, a match that resolved to `TileOutput::Skip`, or a match that failed its chance
/// roll.
///
/// Will use a default randomly seeded RNG to select from a list, if the output resolves to
/// a random selection
#[cfg(feature = "impl_fastrand")]
pub fn resolve_match(&self, input: &TileLayout) -> Option<usize> {
self.get_match(input).and_then(|out| out.resolve())
}
/// Evaluate this rule and produce an output, if a match is found. "None" represents either
/// no match, a match that resolved to `TileOutput::Skip`, or a match that failed its chance
/// roll.
///
/// Will use a the provided RNG to select from a list, if the output resolves to
/// a random selection
#[cfg(feature = "impl_fastrand")]
pub fn resolve_match_seeded(
&self,
input: &TileLayout,
seeded: &fastrand::Rng,
) -> Option<usize> {
self.get_match_seeded(input, seeded)
.and_then(|out| out.resolve_with(seeded))
}
}
/// Holds a list of rules, for efficiently evaluating a tile layout against multiple exclusive rules.
/// Rules will be evaluated in the order they are added to the set, and will stop evaluating when
/// a match is found
#[derive(Clone, Debug, Default)]
pub struct AutoRuleSet(pub Vec<AutoTileRule>);
impl Add<AutoRuleSet> for AutoRuleSet {
type Output = AutoRuleSet;
/// Combine two AutoRuleSet values, where the rules in the right hand side
/// will be appended to the end of the set represented by the left hand
/// side
fn add(self, rhs: AutoRuleSet) -> Self::Output {
AutoRuleSet([self.0.as_slice(), rhs.0.as_slice()].concat())
}
}
impl From<AutoTileRule> for AutoRuleSet {
/// Create a rule set from a single rule
///
/// ```rust
/// # use micro_autotile::{AutoRuleSet, AutoTileRule};
/// # fn main() {
/// use micro_autotile::TileLayout;
/// let rule_set: AutoRuleSet = AutoTileRule::exact(1, 2).into();
///
/// assert_eq!(rule_set.resolve_match(&TileLayout::single(1)), Some(2));
/// # }
/// ```
fn from(value: AutoTileRule) -> Self {
Self(vec![value])
}
}
impl From<Vec<AutoTileRule>> for AutoRuleSet {
/// Convert a set of rules into a rule set
///
/// ```rust
/// # use micro_autotile::{AutoRuleSet, AutoTileRule};
/// # fn main() {
/// use micro_autotile::TileLayout;
/// let rule_set: AutoRuleSet = vec![
/// AutoTileRule::exact(1, 2),
/// AutoTileRule::exact(5123, 231)
/// ].into();
///
/// assert_eq!(rule_set.resolve_match(&TileLayout::single(1)), Some(2));
/// # }
/// ```
fn from(value: Vec<AutoTileRule>) -> Self {
Self(value)
}
}
impl AutoRuleSet {
/// Evaluate this set of rules and return the unresolved output value from the first match.
/// A return value of `None` means that no rules have matched.
///
/// Will use a default randomly seeded RNG to evaluate the chance roll for each matching rule
#[cfg(feature = "impl_fastrand")]
pub fn get_match(&self, input: &TileLayout) -> Option<&TileOutput> {
for rule in self.0.iter() {
let result = rule.get_match(input);
if result.is_some() {
return result;
}
}
None
}
/// Evaluate this set of rules and return the unresolved output value from the first match.
/// A return value of `None` means that no rules have matched, or all matching results failed
/// their chance roll or resolved to `TileOutput::Skip`.
///
/// Will use the provided RNG to evaluate the chance roll for each matching rule
#[cfg(feature = "impl_fastrand")]
pub fn get_match_seeded(
&self,
input: &TileLayout,
seeded: &fastrand::Rng,
) -> Option<&TileOutput> {
for rule in self.0.iter() {
let result = rule.get_match_seeded(input, seeded);
if result.is_some() {
return result;
}
}
None
}
/// Evaluate this set of rules and produce an output, if a match is found.
/// A return value of `None` means that no rules have matched, or all matching results failed
/// their chance roll or resolved to `TileOutput::Skip`.
///
/// Will use a default randomly seeded RNG to select from a list, if the output resolves to
/// a random selection
#[cfg(feature = "impl_fastrand")]
pub fn resolve_match(&self, input: &TileLayout) -> Option<usize> {
self.get_match(input).and_then(|out| out.resolve())
}
/// Evaluate this set of rules and produce an output, if a match is found.
/// A return value of `None` means that no rules have matched, or all matching results failed
/// their chance roll or resolved to `TileOutput::Skip`.
///
/// Will use the provided RNG to select from a list, if the output resolves to
/// a random selection
#[cfg(feature = "impl_fastrand")]
pub fn resolve_match_seeded(
&self,
input: &TileLayout,
seeded: &fastrand::Rng,
) -> Option<usize> {
self.get_match_seeded(input, seeded)
.and_then(|out| out.resolve_with(seeded))
}
}