1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
//! `micro_autotile` provides an implementation of the LDTK auto-tiling algorithm, for use in
//! programs at runtime. The representation is compatible with that saved by LDTK, meaning that
//! definitions can be loaded directly from LDTK JSON exports.
//!
//! Creating a single rule works like this:
//!
//! 1. Create a `TileMatcher` out of `TileStatus` entries.
//!     * Tile Matchers are squares represented as fixed size flat arrays
//!     * Currently only 1x1 and 3x3 matchers are supported, 5x5 matchers are incompatible
//!     * Since a Tile Matcher is a rule, they are usually created statically or loaded as
//!        an asset that will not change much / at all
//! 2. Create a `TileOutput` that represents the value produces by this rule when it matches
//!     * An output value of `Skip` will cause the rule to be a noop. This has utility when combined
//!       with a rule's `chance` value, as part of a set of rules
//!     * A `Single` output will always produce the same value
//!     * A `Random` output will produce one of the provided values at random
//! 3. Combine these into an `AutoTileRule`
//!     * There are a number of convenience methods for doing this process without mistakes in a single function call
//!
//! To utilise your matcher, you'll need to provide a specifically formatted slice of your input data (typically a sub-grid
//! of a tile map). If you're matching a single tile, you can use the convenience method `TileLayout::single`, otherwise
//! you will need to provide a 9 element array that represents 3 rows and 3 columns of data, in the following format:
//!
//! ```text
//! Flat array data
//! [1, 2, 3, 4, 5, 6, 7, 8, 9]
//! ```
//!
//! ```text
//! Formatted in the way it would appear if laid out in a tile map
//! [
//!   1, 2, 3, # First row, all three columns
//!   4, 5, 6, # Second row, all three columns
//!   7, 8, 9, # Third row, all three columns
//! ]
//! ```
//!
//! As we can see, the fifth element of the array is the centre tile of our matching grid. In fact, `TileLayout::single` constructs
//! a 9 element array where the fifth element is `Some(your_value)`, and the rest are simply `None`. This is possible because the
//! actual data represents each element as an `Option` (not as the simple numbers above), which allows matching up against edges of
//! data arrays, or against non-regular shapes. Putting this together to match against data from our tile map, we have the following:
//!
//! e.g.
//! ```rust
//! # use micro_autotile::{AutoTileRule, TileLayout, TileOutput};
//! # fn main() {
//! use micro_autotile::TileMatcher;
//! // Tile maps often use unsigned integers to represent different types of tiles
//! const WALL_TILE: usize = 0;
//! const GROUND_TILE: usize = 1;
//!
//! // Match a 1x1 ground tile, output the index within the spritesheet that we'll use for rendering
//! let match_1_x_1 = AutoTileRule::exact(GROUND_TILE, 57);
//!
//! assert_eq!(
//!   match_1_x_1.resolve_match(&TileLayout::single(GROUND_TILE)),
//!   Some(57)
//! );
//!
//! // More realistically, we might have some tile data for a ground tile with other data arround it.
//! // When we match against a rule, we're always trying to produce a value for the _central_ value in
//! // our `TileLayout` (the fifth element)
//! let enclosed_ground = TileLayout([
//!   Some(WALL_TILE), Some(WALL_TILE), Some(WALL_TILE),
//!   Some(WALL_TILE), Some(GROUND_TILE), Some(WALL_TILE),
//!   Some(WALL_TILE), Some(WALL_TILE), Some(WALL_TILE),
//! ]);
//!
//! assert_eq!(
//!   match_1_x_1.resolve_match(&enclosed_ground),
//!   Some(57)
//! );
//!
//! // There may also be situations in which you just want to know that a given layout matches a rule, without
//! // concern for producing a value for that layout. You can directly use a `TileMatcher` for this
//! assert!(TileMatcher::single(GROUND_TILE).matches(&enclosed_ground));
//! # }
//! ```
//!
//! There's already a lot of utility to these structures, but we still need to manually run a set of
//! rules against our maps and do some work with the `AutoTileRule::chance` property to figure out
//! what the final output should be for a given layout.
//!
//! Introducing the `AutoRuleSet` struct, that represents a sequence of rules that should be evaluated
//! to produce an output. It provides similar methods to the individual AutoTileRule, but will execute
//! against a set of rules at once. There are also convenience methods for combining AutoRuleSet
//! instances
//!
//! ```rust
//! # use micro_autotile::{AutoTileRule, AutoRuleSet, TileLayout, TileOutput};
//! # fn main() {
//! use micro_autotile::{TileMatcher, TileStatus};
//! const WALL_TILE: usize = 0;
//! const GROUND_TILE: usize = 1;
//! const OTHER_TILE: usize = 342;
//!
//! let wall_rules = AutoRuleSet(vec![
//! 	AutoTileRule::single_when(TileMatcher([ // Top Left Corner
//! 		TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! 		TileStatus::IsNot(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE),
//! 		TileStatus::IsNot(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE),
//! 	]), 54),
//! 	AutoTileRule::single_when(TileMatcher([ // Top Right Corner
//! 		TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! 		TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! 		TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! 	]), 55),
//! 	// ... Etc
//! ]);
//!
//! let ground_rules = AutoRuleSet(vec![
//! 	// Use decorated tiles in 10% of cases
//! 	AutoTileRule::single_any_chance(GROUND_TILE, vec![45, 46, 47], 0.1),
//! 	// Fall back to the basic tile if we don't match previously
//! 	AutoTileRule::exact(GROUND_TILE, 44),
//! ]);
//!
//! // Easily merge rule sets in an ordered way
//! let combined_rules = wall_rules + ground_rules;
//!
//! let sublayout = TileLayout([
//! 	Some(OTHER_TILE), Some(GROUND_TILE), Some(GROUND_TILE),
//! 	Some(WALL_TILE), Some(WALL_TILE), Some(OTHER_TILE),
//! 	Some(WALL_TILE), Some(WALL_TILE), Some(GROUND_TILE),
//! ]);
//!
//! // We've got a layout that represents the top right corner of a wall, the second rule in our
//! // set - the value of the tiles that match "IsNot(WALL_TILE)" are irrelevant, as long as they
//! // exist (Option::Some)
//! let output = combined_rules.resolve_match(&sublayout);
//! assert_eq!(output, Some(55));
//! # }
//! ```

use std::ops::Add;

/// Represents how a single tile location should be matched when evaluating a rule
#[derive(Ord, PartialOrd, Eq, PartialEq, Hash, Debug, Default, Copy, Clone)]
pub enum TileStatus {
	/// This tile will always match, regardless of the input tile
	#[default]
	Ignore,
	/// This tile will only match when there is no input tile (`None`)
	Nothing,
	/// This tile will always match as long as the tile exists (`Option::is_some`)
	Anything,
	/// This tile will match as long as the input tile exists and the input value is the same as this value
	Is(usize),
	/// This tile will match as long as the input tile exists and the input value is anything other than this value
	IsNot(usize),
}

impl PartialEq<Option<usize>> for TileStatus {
	fn eq(&self, other: &Option<usize>) -> bool {
		match self {
			Self::Ignore => true,
			Self::Nothing => other.is_none(),
			Self::Anything => other.is_some(),
			Self::Is(value) => &Some(*value) == other,
			Self::IsNot(value) => &Some(*value) != other,
		}
	}
}

impl TileStatus {
	pub fn to_ldtk_value(&self) -> i64 {
		match self {
			Self::Ignore => 0,
			Self::Nothing => -1000001,
			Self::Anything => 1000001,
			Self::Is(value) => *value as i64,
			Self::IsNot(value) => -(*value as i64),
		}
	}

	pub fn from_ldtk_value(value: i64) -> Self {
		match value {
			0 => Self::Ignore,
			1000001 => Self::Anything,
			-1000001 => Self::Nothing,
			other => {
				if other > 0 {
					Self::Is(other as usize)
				} else {
					Self::IsNot(other.unsigned_abs() as usize)
				}
			}
		}
	}
}

/// Holds the evaluation rules for a 3x3 grid of tiles. A 1x1 grid of tile matchers
/// can be created by providing an array of `TileStatus` structs that are all `TileStatus::Ignore`,
/// except for the value in the fifth position
///
/// e.g.
///
/// ```
/// # use micro_autotile::{TileMatcher, TileStatus};
/// let matcher = TileMatcher([
///   TileStatus::Ignore, TileStatus::Ignore, TileStatus::Ignore,
///   TileStatus::Ignore, TileStatus::Anything, TileStatus::Ignore,
///   TileStatus::Ignore, TileStatus::Ignore, TileStatus::Ignore,
/// ]);
/// ```
#[derive(Clone, Debug, Default)]
#[repr(transparent)]
pub struct TileMatcher(pub [TileStatus; 9]);

impl TileMatcher {
	/// Create a 1x1 matcher, where the target tile must be the supplied `value`
	pub const fn single(value: usize) -> Self {
		Self([
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Is(value),
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Ignore,
		])
	}

	/// Create a 1x1 matcher, with any rule for the target tile
	pub const fn single_match(value: TileStatus) -> Self {
		Self([
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Ignore,
			value,
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Ignore,
			TileStatus::Ignore,
		])
	}

	/// Check if the given input layout of tile data conforms to this matcher
	pub fn matches(&self, layout: &TileLayout) -> bool {
		self.0
			.iter()
			.zip(layout.0.iter())
			.all(|(status, reality)| *status == *reality)
	}

	/// Load data from an LDTK JSON file. Currently supports 1x1 and 3x3 matchers.
	/// Other sizes of matcher will result in `None`
	pub fn from_ldtk_array(value: Vec<i64>) -> Option<Self> {
		if value.len() == 1 {
			let tile = value[0];
			Some(Self::single_match(TileStatus::from_ldtk_value(tile)))
		} else if value.len() == 9 {
			Some(TileMatcher(
				[
					value[0], value[1], value[2], value[3], value[4], value[5], value[6], value[7],
					value[8],
				]
				.map(TileStatus::from_ldtk_value),
			))
		} else {
			None
		}
	}
}

/// Represents a grid of input data. What this data means is dependant on your application, and
/// could realistically correlate to anything. It is assumed to be a 3x3 slice of tile data from a
/// tile map
#[derive(Clone, Debug, Default)]
#[repr(transparent)]
pub struct TileLayout(pub [Option<usize>; 9]);

impl TileLayout {
	/// Create a 1x1 grid of tile data
	pub fn single(value: usize) -> Self {
		TileLayout([None, None, None, None, Some(value), None, None, None, None])
	}

	/// Construct a filled 3x3 grid of tile data
	pub fn filled(values: [usize; 9]) -> Self {
		TileLayout(values.map(Some))
	}

	/// Construct a filled 3x3 grid of identical tile data
	pub fn spread(value: usize) -> Self {
		TileLayout([Some(value); 9])
	}

	/// Filter the layout data so that it only contains the tiles surrounding the target tile. The main
	/// utility of this is to perform set operations on every tile _other_ than the target tile.
	///
	/// e.g.
	///
	/// ```
	/// # use micro_autotile::TileLayout;
	/// let layout = TileLayout::single(123);
	/// let has_any_surrounding_tiles = layout.surrounding()
	///   .iter()
	///   .any(|tile| tile.is_some());
	///
	/// assert_eq!(has_any_surrounding_tiles, false);
	/// ```
	pub fn surrounding(&self) -> [Option<usize>; 8] {
		[
			self.0[0], self.0[1], self.0[2], self.0[3], self.0[5], self.0[6], self.0[7], self.0[8],
		]
	}
}

/// Represents the value produced when a rule is matched. Will need to be inspected to find out
/// the raw data value. This value will typically correspond to an index in a spritesheet, but
/// there is no proscribed meaning - it will be application dependant and could represent some
/// other index or meaning
#[derive(Clone, Debug, Default)]
pub enum TileOutput {
	/// This output should be skipped. Noop equivalent
	#[default]
	Skip,
	/// This exact value should be produces
	Single(usize),
	/// Some method should be used to select one of the values in this list
	Random(Vec<usize>),
}

impl TileOutput {
	/// Create an output that can produce the input value when this output is selected
	pub const fn single(value: usize) -> Self {
		TileOutput::Single(value)
	}

	/// Create an output that can produce any of these input values when this output is selected
	pub const fn any(value: Vec<usize>) -> Self {
		TileOutput::Random(value)
	}

	/// Produce the value this output represents. Will use a default randomly seeded RNG to
	/// select from a list, if appropriate
	#[cfg(feature = "impl_fastrand")]
	pub fn resolve(&self) -> Option<usize> {
		self.resolve_with(&fastrand::Rng::default())
	}

	/// Produce the value this output represents. Will use a default randomly seeded RNG to
	/// select from a list, if appropriate
	#[cfg(feature = "impl_fastrand")]
	pub fn resolve_with(&self, rng: &fastrand::Rng) -> Option<usize> {
		match self {
			Self::Skip => None,
			Self::Single(val) => Some(*val),
			Self::Random(vals) => vals.get(rng.usize(0..vals.len())).copied(),
		}
	}
}

/// Checks tile layouts against a matcher instance, and uses the output to produce a value
#[derive(Clone, Debug, Default)]
pub struct AutoTileRule {
	/// The pattern that this rule will use for matching
	pub matcher: TileMatcher,
	/// The value produced when this rule gets matched
	pub output: TileOutput,
	/// When used as part of a set of rules, this value (0.0 - 1.0) determines the chance that
	/// a successful match will generate an output from this rule
	pub chance: f32,
}

impl AutoTileRule {
	/// Create a rule that will always produce `output_value` when the target tile matches
	/// `input_value`
	pub const fn exact(input_value: usize, output_value: usize) -> Self {
		Self::exact_chance(input_value, output_value, 1.0)
	}

	/// Create a rule that will produce `output_value` when the target tile matches
	/// `input_value` and the selection chance is rolled under the value of `chance` (0.0 to 1.0)
	pub const fn exact_chance(input_value: usize, output_value: usize, chance: f32) -> Self {
		AutoTileRule {
			matcher: TileMatcher::single(input_value),
			output: TileOutput::single(output_value),
			chance,
		}
	}

	/// Create a rule that will always produce `output_value` when `matcher` evaluates to
	/// `true`
	pub const fn single_when(matcher: TileMatcher, output_value: usize) -> Self {
		AutoTileRule {
			matcher,
			output: TileOutput::single(output_value),
			chance: 1.0,
		}
	}

	/// Create a rule that will always produce one of the values contained in `output_value`
	/// when the target tile matches `input_value`
	pub const fn single_any(input_value: usize, output_value: Vec<usize>) -> Self {
		Self::single_any_chance(input_value, output_value, 1.0)
	}

	/// Create a rule that will produce one of the values contained in `output_value`
	/// when the target tile matches `input_value` and the selection chacne is rolled under the
	/// value of `chance` (0.0 to 1.0)
	pub const fn single_any_chance(
		input_value: usize,
		output_value: Vec<usize>,
		chance: f32,
	) -> Self {
		AutoTileRule {
			matcher: TileMatcher::single(input_value),
			output: TileOutput::any(output_value),
			chance,
		}
	}

	/// Create a rule that will produce one of the values contained in `output_value`
	/// when when `matcher` evaluates to `true` and the selection chacne is rolled under
	/// the value of `chance` (0.0 to 1.0)
	pub const fn any_any_chance(
		input_value: TileMatcher,
		output_value: Vec<usize>,
		chance: f32,
	) -> Self {
		AutoTileRule {
			matcher: input_value,
			output: TileOutput::any(output_value),
			chance,
		}
	}

	/// Evaluate this rule and return the unresolved output value. "None" represents either no
	/// match or a match that failed its chance roll.
	///
	/// Will use a default randomly seeded RNG to evaluate the chance roll for this rule
	#[cfg(feature = "impl_fastrand")]
	pub fn get_match(&self, input: &TileLayout) -> Option<&TileOutput> {
		let chance = fastrand::f32();

		if chance <= self.chance && self.matcher.matches(input) {
			Some(&self.output)
		} else {
			None
		}
	}

	/// Evaluate this rule and return the unresolved output value. "None" represents either no
	/// match or a match that failed its chance roll.
	///
	/// Will use the provided RNG to evaluate the chance roll for this rule
	#[cfg(feature = "impl_fastrand")]
	pub fn get_match_seeded(
		&self,
		input: &TileLayout,
		seeded: &fastrand::Rng,
	) -> Option<&TileOutput> {
		let chance = seeded.f32();

		if chance <= self.chance && self.matcher.matches(input) {
			Some(&self.output)
		} else {
			None
		}
	}

	/// Evaluate this rule and produce an output, if a match is found. "None" represents either
	/// no match, a match that resolved to `TileOutput::Skip`, or a match that failed its chance
	/// roll.
	///
	/// Will use a default randomly seeded RNG to select from a list, if the output resolves to
	/// a random selection
	#[cfg(feature = "impl_fastrand")]
	pub fn resolve_match(&self, input: &TileLayout) -> Option<usize> {
		self.get_match(input).and_then(|out| out.resolve())
	}

	/// Evaluate this rule and produce an output, if a match is found. "None" represents either
	/// no match, a match that resolved to `TileOutput::Skip`, or a match that failed its chance
	/// roll.
	///
	/// Will use a the provided RNG to select from a list, if the output resolves to
	/// a random selection
	#[cfg(feature = "impl_fastrand")]
	pub fn resolve_match_seeded(
		&self,
		input: &TileLayout,
		seeded: &fastrand::Rng,
	) -> Option<usize> {
		self.get_match_seeded(input, seeded)
			.and_then(|out| out.resolve_with(seeded))
	}
}

/// Holds a list of rules, for efficiently evaluating a tile layout against multiple exclusive rules.
/// Rules will be evaluated in the order they are added to the set, and will stop evaluating when
/// a match is found
#[derive(Clone, Debug, Default)]
pub struct AutoRuleSet(pub Vec<AutoTileRule>);

impl Add<AutoRuleSet> for AutoRuleSet {
	type Output = AutoRuleSet;

	/// Combine two AutoRuleSet values, where the rules in the right hand side
	/// will be appended to the end of the set represented by the left hand
	/// side
	fn add(self, rhs: AutoRuleSet) -> Self::Output {
		AutoRuleSet([self.0.as_slice(), rhs.0.as_slice()].concat())
	}
}

impl From<AutoTileRule> for AutoRuleSet {
	/// Create a rule set from a single rule
	///
	/// ```rust
	/// # use micro_autotile::{AutoRuleSet, AutoTileRule};
	/// # fn main() {
	/// use micro_autotile::TileLayout;
	/// let rule_set: AutoRuleSet = AutoTileRule::exact(1, 2).into();
	///
	/// assert_eq!(rule_set.resolve_match(&TileLayout::single(1)), Some(2));
	/// # }
	/// ```
	fn from(value: AutoTileRule) -> Self {
		Self(vec![value])
	}
}

impl From<Vec<AutoTileRule>> for AutoRuleSet {
	/// Convert a set of rules into a rule set
	///
	/// ```rust
	/// # use micro_autotile::{AutoRuleSet, AutoTileRule};
	/// # fn main() {
	/// use micro_autotile::TileLayout;
	/// let rule_set: AutoRuleSet = vec![
	///   AutoTileRule::exact(1, 2),
	///   AutoTileRule::exact(5123, 231)
	/// ].into();
	///
	/// assert_eq!(rule_set.resolve_match(&TileLayout::single(1)), Some(2));
	/// # }
	/// ```
	fn from(value: Vec<AutoTileRule>) -> Self {
		Self(value)
	}
}

impl AutoRuleSet {
	/// Evaluate this set of rules and return the unresolved output value from the first match.
	/// A return value of `None` means that no rules have matched.
	///
	/// Will use a default randomly seeded RNG to evaluate the chance roll for each matching rule
	#[cfg(feature = "impl_fastrand")]
	pub fn get_match(&self, input: &TileLayout) -> Option<&TileOutput> {
		for rule in self.0.iter() {
			let result = rule.get_match(input);
			if result.is_some() {
				return result;
			}
		}
		None
	}

	/// Evaluate this set of rules and return the unresolved output value from the first match.
	/// A return value of `None` means that no rules have matched, or all matching results failed
	/// their chance roll or resolved to `TileOutput::Skip`.
	///
	/// Will use the provided RNG to evaluate the chance roll for each matching rule
	#[cfg(feature = "impl_fastrand")]
	pub fn get_match_seeded(
		&self,
		input: &TileLayout,
		seeded: &fastrand::Rng,
	) -> Option<&TileOutput> {
		for rule in self.0.iter() {
			let result = rule.get_match_seeded(input, seeded);
			if result.is_some() {
				return result;
			}
		}
		None
	}

	/// Evaluate this set of rules and produce an output, if a match is found.
	/// A return value of `None` means that no rules have matched, or all matching results failed
	/// their chance roll or resolved to `TileOutput::Skip`.
	///
	/// Will use a default randomly seeded RNG to select from a list, if the output resolves to
	/// a random selection
	#[cfg(feature = "impl_fastrand")]
	pub fn resolve_match(&self, input: &TileLayout) -> Option<usize> {
		self.get_match(input).and_then(|out| out.resolve())
	}

	/// Evaluate this set of rules and produce an output, if a match is found.
	/// A return value of `None` means that no rules have matched, or all matching results failed
	/// their chance roll or resolved to `TileOutput::Skip`.
	///
	/// Will use the provided RNG to select from a list, if the output resolves to
	/// a random selection
	#[cfg(feature = "impl_fastrand")]
	pub fn resolve_match_seeded(
		&self,
		input: &TileLayout,
		seeded: &fastrand::Rng,
	) -> Option<usize> {
		self.get_match_seeded(input, seeded)
			.and_then(|out| out.resolve_with(seeded))
	}
}