metrics/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//! A lightweight metrics facade.
//!
//! The `metrics` crate provides a single metrics API that abstracts over the actual metrics implementation.  Libraries
//! can use the metrics API provided by this crate, and the consumer of those libraries can choose the metrics
//! implementation that is most suitable for its use case.
//!
//! # Overview
//! `metrics` exposes two main concepts: emitting a metric, and recording it.
//!
//! ## Metric types, or kinds
//! This crate supports three fundamental metric types, or kinds: counters, gauges, and histograms.
//!
//! ### Counters
//! A counter is a cumulative metric that represents a monotonically increasing value which can only be increased or be
//! reset to zero on restart. For example, you might use a counter to represent the number of operations performed, or
//! the number of errors that have occurred.
//!
//! Counters are unsigned 64-bit integers.
//!
//! If you have a value that goes up and down over time, consider using a gauge.
//!
//! ### Gauges
//! A gauge is a metric that can go up and down, arbitrarily, over time.
//!
//! Gauges are typically used for measured, external values, such as temperature, throughput, or things like current
//! memory usage.  Even if the value is monotonically increasing, but there is no way to store the delta in order to
//! properly figure out how much to increment by, then a gauge might be a suitable choice.
//!
//! Gauges support two modes: incremental updates, or absolute updates.  This allows callers to use them for external
//! measurements -- where no delta can be computed -- as well as internal measurements.
//!
//! Gauges are floating-point 64-bit numbers.
//!
//! ### Histograms
//! A histogram stores an arbitrary number of observations of a specific measurement and provides statistical analysis
//! over the observed values.  Typically, measurements such as request latency are recorded with histograms: a specific
//! action that is repeated over and over which can have a varying result each time.
//!
//! Histograms are used to explore the distribution of values, allowing a caller to understand the modalities of the
//! distribution, such as whether or not all values are grouped close together, or spread evenly, or even whether or not
//! there are multiple groupings or clusters.
//!
//! Colloquially, histograms are usually associated with percentiles, although by definition, they specifically deal
//! with bucketed or binned values: how many values fell within 0-10, how many fell within 11-20, and so on and so
//! forth.  Percentiles, commonly associated with "summaries", deal with understanding how much of a distribution falls
//! below or at a particular percentage of that distribution: 50% of requests are faster than 500ms, 99% of requests are
//! faster than 2450ms, and so on and so forth.
//!
//! While we use the term "histogram" in `metrics`, we enforce no particular usage of true histograms or summaries.  The
//! choice of output is based entirely on the exporter being used to ship your metric data out of your application.  For
//! example, if you're using [metrics-exporter-prometheus], Prometheus supports both histograms and summaries, and the
//! exporter can be configured to output our "histogram" data as either.  Other exporters may choose to stick to using
//! summaries, as is traditional, in order to generate percentile data.
//!
//! Histograms take floating-point 64-bit numbers.
//!
//! ## Emission
//!
//! Metrics are emitted by utilizing the emission methods.  There is a macro for registering and returning a handle for
//! each fundamental metric type:
//!
//! - [`counter!`] returns the [`Counter`] handle then
//!     - [`Counter::increment`] increments the counter.
//!     - [`Counter::absolute`] sets the counter.
//! - [`gauge!`] returns the [`Gauge`] handle then
//!     - [`Gauge::increment`] increments the gauge.
//!     - [`Gauge::decrement`] decrements the gauge.
//!     - [`Gauge::set`] sets the gauge.
//! - [`histogram!`] for histograms then
//!     - [`Histogram::record`] records a data point.
//!
//! Additionally, metrics can be described -- setting either the unit of measure or long-form description -- by using
//! the `describe_*` macros:
//!
//! - [`describe_counter!`] for counters
//! - [`describe_gauge!`] for gauges
//! - [`describe_histogram!`] for histograms
//!
//! In order to register or emit a metric, you need a way to record these events, which is where [`Recorder`] comes into
//! play.
//!
//! ## Recording
//!
//! The [`Recorder`] trait defines the interface between the registration/emission macros, and exporters, which is how
//! we refer to concrete implementations of [`Recorder`].  The trait defines what the exporters are doing -- recording
//! -- but ultimately exporters are sending data from your application to somewhere else: whether it be a third-party
//! service or logging via standard out.  It's "exporting" the metric data out of your application.
//!
//! Each metric type is usually reserved for a specific type of use case, whether it be tracking a single value or
//! allowing the summation of multiple values, and the respective macros elaborate more on the usage and invariants
//! provided by each.
//!
//! # Getting Started
//!
//! ## In libraries
//!
//! Libraries need only include the `metrics` crate to emit metrics.  When an executable installs a recorder, all
//! included crates which emitting metrics will now emit their metrics to that record, which allows library authors to
//! seamless emit their own metrics without knowing or caring which exporter implementation is chosen, or even if one is
//! installed.
//!
//! In cases where no global recorder is installed, a "noop" recorder lives in its place, which has an incredibly very
//! low overhead: an atomic load and comparison.  Libraries can safely instrument their code without fear of ruining
//! baseline performance.
//!
//! By default, a "noop" recorder is present so that the macros can work even if no exporter has been installed.  This
//! recorder has extremely low overhead -- a relaxed load and conditional -- and so, practically speaking, the overhead
//! when no exporter is installed is extremely low.  You can safely instrument applications knowing that you won't pay a
//! heavy performance cost even if you're not shipping metrics.
//!
//! ### Examples
//!
//! ```rust
//! use metrics::{counter, histogram};
//!
//! # use std::time::Instant;
//! # pub fn run_query(_: &str) -> u64 { 42 }
//! pub fn process(query: &str) -> u64 {
//!     let start = Instant::now();
//!     let row_count = run_query(query);
//!     let delta = start.elapsed();
//!
//!     histogram!("process.query_time").record(delta);
//!     counter!("process.query_row_count").increment(row_count);
//!
//!     row_count
//! }
//! # fn main() {}
//! ```
//!
//! ## In executables
//!
//! Executables, which themselves can emit their own metrics, are intended to install a global recorder so that metrics
//! can actually be recorded and exported somewhere.
//!
//! Initialization of the global recorder isn't required for macros to function, but any metrics emitted before a global
//! recorder is installed will not be recorded, so initialization and installation of an exporter should happen as early
//! as possible in the application lifecycle.
//!
//! ### Warning
//!
//! The metrics system may only be initialized once.
//!
//! For most use cases, you'll be using an off-the-shelf exporter implementation that hooks up to an existing metrics
//! collection system, or interacts with the existing systems/processes that you use.
//!
//! Out of the box, some exporter implementations are available for you to use:
//!
//! * [metrics-exporter-tcp] - outputs metrics to clients over TCP
//! * [metrics-exporter-prometheus] - serves a Prometheus scrape endpoint
//!
//! You can also implement your own recorder if a suitable one doesn't already exist.
//!
//! # Development
//!
//! The primary interface with `metrics` is through the [`Recorder`] trait, which is the connection between the
//! user-facing emission macros -- `counter!`, and so on -- and the actual logic for handling those metrics and doing
//! something with them, like logging them to the console or sending them to a remote metrics system.
//!
//! ## Keys
//!
//! All metrics are, in essence, the combination of a metric type and metric identifier, such as a histogram called
//! "response_latency".  You could conceivably have multiple metrics with the same name, so long as they are of
//! different types.
//!
//! As the types are enforced/limited by the [`Recorder`] trait itself, the remaining piece is the identifier, which we
//! handle by using [`Key`]. Keys hold both the metric name, and potentially, labels related to the metric. The metric
//! name and labels are always string values.
//!
//! Internally, `metrics` uses a clone-on-write "smart pointer" for these values to optimize cases where the values are
//! static strings, which can provide significant performance benefits.  These smart pointers can also hold owned
//! `String` values, though, so users can mix and match static strings and owned strings without issue.
//!
//! Two [`Key`] objects can be checked for equality and considered to point to the same metric if they are equal.
//! Equality checks both the name of the key and the labels of a key.  Labels are _not_ sorted prior to checking for
//! equality, but insertion order is maintained, so any [`Key`] constructed from the same set of labels in the same
//! order should be equal.
//!
//! It is an implementation detail if a recorder wishes to do an deeper equality check that ignores the order of labels,
//! but practically speaking, metric emission, and thus labels, should be fixed in ordering in nearly all cases, and so
//! it typically is not a problem.
//!
//! ## Registration
//!
//! Recorders must handle the "registration" of a metric.
//!
//! In practice, registration solves two potential problems: providing metadata for a metric, and creating an entry for
//! a metric even though it has not been emitted yet.
//!
//! Callers may wish to provide a human-readable description of what the metric is, or provide the units the metrics
//! uses.  Additionally, users may wish to register their metrics so that they show up in the output of the installed
//! exporter even if the metrics have yet to be emitted.  This allows callers to ensure the metrics output is stable, or
//! allows them to expose all of the potential metrics a system has to offer, again, even if they have not all yet been
//! emitted.
//!
//! As you can see from the trait, the registration methods treats the metadata as optional, and the macros allow users
//! to mix and match whichever fields they want to provide.
//!
//! When a metric is registered, the expectation is that it will show up in output with a default value, so, for
//! example, a counter should be initialized to zero, a histogram would have no values, and so on.
//!
//! ## Metadata
//!
//! When registering a metric, metadata can be provided to further describe the metric, in particular about where in the
//! system it originates from and how verbose it is. This metadata emulates much of the same metadata as `tracing`, as
//! it is intended to be used in a similar way: to provide the ability to filter metrics in a more granular way.
//!
//! Metadata provides three main pieces of information: the verbosity of the metric (level), the part of the system it
//! originates from (target), and the Rust module it originates from (module path).
//!
//! For example, an application may wish to collect high-cardinality metrics, such as telemetry about a feature,
//! including the customers using it. Tracking customer usage could mean having a tag with many possible values, and
//! submitting these metrics to the configured downstream system could be costly or computationally expensive.
//!
//! By setting these metrics to a verbosity level of DEBUG, these metrics could potentially be filtered out at the
//! recorder level, without having to change the application code or manually decide, at the callsite, whether or not to
//! emit the metric.
//!
//! Metadata is exporter-specific, and may be ignored entirely. See the documentation of the specific exporter being
//! used for more information on how metadata is utilized, if at all.
//!
//! ## Emission
//!
//! Likewise, recorders must handle the emission of metrics as well.
//!
//! Comparatively speaking, emission is not too different from registration: you have access to the same [`Key`] as well
//! as the value being emitted.
//!
//! For recorders which temporarily buffer or hold on to values before exporting, a typical approach would be to utilize
//! atomic variables for the storage.  For counters and gauges, this can be done simply by using types like
//! [`AtomicU64`](std::sync::atomic::AtomicU64).  For histograms, this can be slightly tricky as you must hold on to all
//! of the distinct values.  In our helper crate, [`metrics-util`][metrics-util], we've provided a type called
//! [`AtomicBucket`][AtomicBucket].  For exporters that will want to get all of the current values in a batch, while
//! clearing the bucket so that values aren't processed again, [AtomicBucket] provides a simple interface to do so, as
//! well as optimized performance on both the insertion and read side.
//!
//! Combined together, exporter authors can use [`Handle`][Handle], also from the `metrics-util` crate, which provides a
//! consolidated type for holding metric data.  These types, and many more from the `metrics-util` crate, form the basis
//! of typical exporter behavior and have been exposed to help you quickly build a new exporter.
//!
//! ## Installing recorders
//!
//! Recorders, also referred to as exporters, must be "installed" such that the emission macros can access them. As
//! users of `metrics`, you'll typically see exporters provide methods to install themselves that hide the nitty gritty
//! details.  These methods will usually be aptly named, such as `install`.
//!
//! However, at a low level, this can happen in one of two ways: installing a recorder globally, or temporarily using it
//! locally.
//!
//! ### Global recorder
//!
//! The global recorder is the recorder that the macros use by default. It is stored in a static variable accessible by
//! all portions of the compiled application, including dependencies. This is what allows us to provide the same
//! "initialize once, benefit everywhere" behavior that users are familiar with from other telemetry crates like
//! `tracing` and `log`.
//!
//! Only one global recorder can be installed in the lifetime of the process. If a global recorder has already been
//! installed, it cannot be replaced: this is due to the fact that once installed, the recorder is "leaked" so that a
//! static reference can be obtained to it and used by subsequent calls to the emission macros, and any downstream
//! crates.
//!
//! ### Local recorder
//!
//! In many scenarios, such as in unit tests, you may wish to temporarily set a recorder to influence all calls to the
//! emission macros within a specific section of code, without influencing other areas of the code, or being limited by
//! the constraints of only one global recorder being allowed.
//!
//! [`with_local_recorder`] allows you to do this by changing the recorder used by the emission macros for the duration
//! of a given closure. While in that closure, the given recorder will act as if it was the global recorder for the
//! current thread. Once the closure returns, the true global recorder takes priority again for the current thread.
//!
//! [metrics-exporter-tcp]: https://docs.rs/metrics-exporter-tcp
//! [metrics-exporter-prometheus]: https://docs.rs/metrics-exporter-prometheus
//! [metrics-util]: https://docs.rs/metrics-util
//! [AtomicBucket]: https://docs.rs/metrics-util/0.5.0/metrics_util/struct.AtomicBucket.html
//! [Handle]: https://docs.rs/metrics-util/0.5.0/metrics_util/enum.Handle.html
#![deny(missing_docs)]
#![cfg_attr(docsrs, feature(doc_cfg), deny(rustdoc::broken_intra_doc_links))]

pub mod atomics;

mod common;
mod macros;
pub use self::common::*;

mod cow;

mod handles;
pub use self::handles::*;

mod key;
pub use self::key::*;

mod label;
pub use self::label::*;

mod metadata;
pub use self::metadata::*;

mod recorder;
pub use self::recorder::*;