1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use std::collections::HashMap;

use crate::layers::Layer;
use aho_corasick::{AhoCorasick, AhoCorasickBuilder};
use metrics::{GaugeValue, Key, Recorder, Unit};
use parking_lot::Mutex;

/// Converts absolute counter values into incremental values.
///
/// More information on the behavior of the layer can be found in [`AbsoluteLayer`].
pub struct Absolute<R> {
    inner: R,
    automaton: AhoCorasick,
    seen: Mutex<HashMap<Key, u64>>,
}

impl<R> Absolute<R> {
    fn should_convert(&self, key: &Key) -> bool {
        self.automaton.is_match(key.name())
    }
}

impl<R: Recorder> Recorder for Absolute<R> {
    fn register_counter(&self, key: &Key, unit: Option<Unit>, description: Option<&'static str>) {
        self.inner.register_counter(key, unit, description)
    }

    fn register_gauge(&self, key: &Key, unit: Option<Unit>, description: Option<&'static str>) {
        self.inner.register_gauge(key, unit, description)
    }

    fn register_histogram(&self, key: &Key, unit: Option<Unit>, description: Option<&'static str>) {
        self.inner.register_histogram(key, unit, description)
    }

    fn increment_counter(&self, key: &Key, value: u64) {
        let value = if self.should_convert(&key) {
            let mut seen = self.seen.lock();
            let curr_value = seen.entry(key.clone()).or_default();
            if value <= *curr_value {
                return;
            }

            let delta = value - *curr_value;
            *curr_value = value;
            delta
        } else {
            value
        };
        self.inner.increment_counter(key, value);
    }

    fn update_gauge(&self, key: &Key, value: GaugeValue) {
        self.inner.update_gauge(key, value);
    }

    fn record_histogram(&self, key: &Key, value: f64) {
        self.inner.record_histogram(key, value);
    }
}

/// A layer for converting absolute counter values into incremental values.
///
/// In some systems, metrics are handled externally, meaning that users only have access to
/// point-in-time snapshots of the values.  This requires users to track the last value and the
/// current value for the purposes of incrementing counters by the delta.  Holding on to this
/// data in each location is cumbersome.
///
/// `AbsoluteLayer` instead tracks all of this data in a single location, driven by specific metric
/// name patterns.  If a metric matches a given pattern, the layer treats it as an absolute value.
/// It will figure out the delta between the last known value and the current value, passing only
/// that delta along to the next layer.  If the current value is not monotonic with respect to the
/// last known value, then no value will be emitted whatsoever.  This preserves the invariant of
/// counters being monotonic.
///
/// Only counters are converted, and all other metric types are passed through unchanged.
/// Internally, the state which holds key/value associations is protected by a mutex, so this layer
/// is not suitable for updating absolute counters that are emitted at a very high frequency or a
/// very large number of concurrent emissions.
///
/// Uses an [Aho-Corasick][ahocorasick] automaton to efficiently match a metric key against
/// multiple patterns at once.  Patterns are matched across the entire key i.e. they are
/// matched as substrings.
///
/// A number of options are exposed that control the underlying automaton, such as compilation to a
/// DFA, or case sensitivity.
///
/// [ahocorasick]: https://en.wikipedia.org/wiki/Aho–Corasick_algorithm
#[derive(Default)]
pub struct AbsoluteLayer {
    patterns: Vec<String>,
    case_insensitive: bool,
    use_dfa: bool,
}

impl AbsoluteLayer {
    /// Creates a [`AbsoluteLayer`] from an existing set of patterns.
    pub fn from_patterns<P, I>(patterns: P) -> Self
    where
        P: IntoIterator<Item = I>,
        I: AsRef<str>,
    {
        AbsoluteLayer {
            patterns: patterns
                .into_iter()
                .map(|s| s.as_ref().to_string())
                .collect(),
            case_insensitive: false,
            use_dfa: true,
        }
    }

    /// Adds a pattern to match.
    pub fn add_pattern<P>(&mut self, pattern: P) -> &mut AbsoluteLayer
    where
        P: AsRef<str>,
    {
        self.patterns.push(pattern.as_ref().to_string());
        self
    }

    /// Sets the case sensitivity used for pattern matching.
    ///
    /// Defaults to `false` i.e. searches are case sensitive.
    pub fn case_insensitive(&mut self, case_insensitive: bool) -> &mut AbsoluteLayer {
        self.case_insensitive = case_insensitive;
        self
    }

    /// Sets whether or not to internally use a deterministic finite automaton.
    ///
    /// The main benefit to a DFA is that it can execute searches more quickly than a NFA (perhaps
    /// 2-4 times as fast). The main drawback is that the DFA uses more space and can take much
    /// longer to build.
    ///
    /// Enabling this option does not change the time complexity for constructing the underlying
    /// Aho-Corasick automaton (which is O(p) where p is the total number of patterns being
    /// compiled). Enabling this option does however reduce the time complexity of non-overlapping
    /// searches from O(n + p) to O(n), where n is the length of the haystack.
    ///
    /// In general, it's a good idea to enable this if you're searching a small number of fairly
    /// short patterns (~1000), or if you want the fastest possible search without regard to
    /// compilation time or space usage.
    ///
    /// Defaults to `true`.
    pub fn use_dfa(&mut self, dfa: bool) -> &mut AbsoluteLayer {
        self.use_dfa = dfa;
        self
    }
}

impl<R> Layer<R> for AbsoluteLayer {
    type Output = Absolute<R>;

    fn layer(&self, inner: R) -> Self::Output {
        let mut automaton_builder = AhoCorasickBuilder::new();
        let automaton = automaton_builder
            .ascii_case_insensitive(self.case_insensitive)
            .dfa(self.use_dfa)
            .auto_configure(&self.patterns)
            .build(&self.patterns);
        Absolute {
            inner,
            automaton,
            seen: Mutex::new(HashMap::new()),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::AbsoluteLayer;
    use crate::layers::Layer;
    use crate::{debugging::DebuggingRecorder, DebugValue};
    use metrics::{GaugeValue, Recorder};
    use ordered_float::OrderedFloat;

    #[test]
    fn test_basic_functionality() {
        let patterns = &["rdkafka"];
        let recorder = DebuggingRecorder::with_ordering(true);
        let snapshotter = recorder.snapshotter();
        let absolute = AbsoluteLayer::from_patterns(patterns);
        let layered = absolute.layer(recorder);

        let ckey = "counter".into();
        let gkey = "gauge".into();
        let hkey = "histo".into();

        let before = snapshotter.snapshot();
        assert_eq!(before.len(), 0);

        layered.register_counter(&ckey, None, None);
        layered.register_gauge(&gkey, None, None);
        layered.register_histogram(&hkey, None, None);

        let after = snapshotter.snapshot();
        assert_eq!(after.len(), 3);

        assert_eq!(after[0].0.key(), &ckey);
        assert_eq!(after[1].0.key(), &gkey);
        assert_eq!(after[2].0.key(), &hkey);

        layered.increment_counter(&ckey, 42);
        layered.update_gauge(&gkey, GaugeValue::Absolute(-420.69));
        layered.record_histogram(&hkey, 3.14);

        let after = snapshotter.snapshot();
        assert_eq!(after.len(), 3);

        assert_eq!(after[0].0.key(), &ckey);
        assert_eq!(after[0].3, DebugValue::Counter(42));
        assert_eq!(after[1].0.key(), &gkey);
        assert_eq!(after[1].3, DebugValue::Gauge(OrderedFloat::<f64>(-420.69)));
        assert_eq!(after[2].0.key(), &hkey);
        assert_eq!(
            after[2].3,
            DebugValue::Histogram(vec![OrderedFloat::<f64>(3.14)])
        );
    }

    #[test]
    fn test_absolute_to_delta() {
        let patterns = &["rdkafka"];
        let recorder = DebuggingRecorder::with_ordering(true);
        let snapshotter = recorder.snapshotter();
        let absolute = AbsoluteLayer::from_patterns(patterns);
        let layered = absolute.layer(recorder);

        let ckey = "counter".into();
        let rbkey = "rdkafka.bytes".into();

        let before = snapshotter.snapshot();
        assert_eq!(before.len(), 0);

        // First counter.  Brand new.
        layered.increment_counter(&ckey, 42);

        let after = snapshotter.snapshot();
        assert_eq!(after.len(), 1);

        assert_eq!(after[0].0.key(), &ckey);
        assert_eq!(after[0].3, DebugValue::Counter(42));

        // Second counter.  Brand new.
        layered.increment_counter(&rbkey, 18);

        let after = snapshotter.snapshot();
        assert_eq!(after.len(), 2);

        assert_eq!(after[0].0.key(), &ckey);
        assert_eq!(after[0].3, DebugValue::Counter(42));
        assert_eq!(after[1].0.key(), &rbkey);
        assert_eq!(after[1].3, DebugValue::Counter(18));

        // Now do them both.
        layered.increment_counter(&ckey, 42);
        layered.increment_counter(&rbkey, 18);

        let after = snapshotter.snapshot();
        assert_eq!(after.len(), 2);

        assert_eq!(after[0].0.key(), &ckey);
        assert_eq!(after[0].3, DebugValue::Counter(84));
        assert_eq!(after[1].0.key(), &rbkey);
        assert_eq!(after[1].3, DebugValue::Counter(18));

        // Try setting another absolute value.
        layered.increment_counter(&rbkey, 24);

        let after = snapshotter.snapshot();
        assert_eq!(after.len(), 2);

        assert_eq!(after[1].0.key(), &rbkey);
        assert_eq!(after[1].3, DebugValue::Counter(24));

        // And make certain we can't regress.
        layered.increment_counter(&rbkey, 18);

        let after = snapshotter.snapshot();
        assert_eq!(after.len(), 2);

        assert_eq!(after[1].0.key(), &rbkey);
        assert_eq!(after[1].3, DebugValue::Counter(24));
    }
}