1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use super::{models::Metric, setup_db, Result};
use crate::models::MetricKey;
use crate::MetricsError;
use diesel::prelude::*;
#[cfg(feature = "import_csv")]
use serde::Deserialize;
use std::path::Path;
use std::time::Duration;
const SESSION_TIME_GAP_THRESHOLD: Duration = Duration::from_secs(30);
#[derive(Debug)]
pub struct DerivMetric {
pub timestamp: f64,
pub key: String,
pub value: f64,
}
#[derive(Debug, Copy, Clone)]
pub struct Session {
pub start_time: f64,
pub end_time: f64,
pub duration: Duration,
}
impl Session {
pub fn new(start_time: f64, end_time: f64) -> Self {
Session {
start_time,
end_time,
duration: Duration::from_secs_f64(end_time - start_time),
}
}
}
pub struct MetricsDb {
db: SqliteConnection,
sessions: Vec<Session>,
}
impl MetricsDb {
pub fn new<P: AsRef<Path>>(path: P) -> Result<Self> {
let mut db = setup_db(path)?;
let sessions = Self::process_sessions(&mut db)?;
Ok(MetricsDb { db, sessions })
}
pub fn sessions(&self) -> Vec<Session> {
self.sessions.clone()
}
fn process_sessions(db: &mut SqliteConnection) -> Result<Vec<Session>> {
use crate::schema::metrics::dsl::*;
let timestamps = metrics
.select(timestamp)
.order(timestamp.asc())
.load::<f64>(db)?;
if timestamps.is_empty() {
return Err(MetricsError::EmptyDatabase);
}
let mut sessions: Vec<Session> = Vec::new();
let mut current_start = timestamps[0];
for pair in timestamps.windows(2) {
if pair[1] - pair[0] > SESSION_TIME_GAP_THRESHOLD.as_secs_f64() {
sessions.push(Session::new(current_start, pair[0]));
current_start = pair[1];
}
}
if let Some(last) = timestamps.last() {
if current_start < *last {
sessions.push(Session::new(current_start, *last));
}
}
Ok(sessions)
}
pub fn available_keys(&mut self) -> Result<Vec<String>> {
use crate::schema::metric_keys::dsl::*;
let r = metric_keys
.select(key)
.distinct()
.load::<String>(&mut self.db)?;
Ok(r)
}
pub fn metrics_for_key(
&mut self,
key_name: &str,
session: Option<&Session>,
) -> Result<Vec<Metric>> {
use crate::schema::metrics::dsl::*;
let metric_key = self.metric_key_for_key(key_name)?;
let query = metrics
.order(timestamp.asc())
.filter(metric_key_id.eq(metric_key.id));
let r = match session {
Some(session) => query
.filter(timestamp.ge(session.start_time))
.filter(timestamp.le(session.end_time))
.load::<Metric>(&mut self.db)?,
None => query.load::<Metric>(&mut self.db)?,
};
Ok(r)
}
fn metric_key_for_key(&mut self, key_name: &str) -> Result<MetricKey> {
use crate::schema::metric_keys::dsl::*;
let query = metric_keys.filter(key.eq(key_name));
let keys = query.load::<MetricKey>(&mut self.db)?;
keys.into_iter()
.next()
.ok_or_else(|| MetricsError::KeyNotFound(key_name.to_string()))
}
pub fn deriv_metrics_for_key(
&mut self,
key_name: &str,
session: Option<&Session>,
) -> Result<Vec<DerivMetric>> {
let m = self.metrics_for_key(key_name, session)?;
let new_values: Vec<_> = m
.windows(2)
.map(|v| {
let new_value =
(v[1].value - v[0].value) / (v[1].timestamp - v[0].timestamp);
DerivMetric {
timestamp: v[1].timestamp,
key: format!("{}.deriv", key_name),
value: new_value,
}
})
.collect();
Ok(new_values)
}
#[cfg(feature = "export_csv")]
pub fn export_to_csv<P: AsRef<Path>>(&mut self, path: P) -> Result<()> {
use crate::schema::metric_keys::dsl::key;
use crate::schema::metrics::dsl::*;
use std::fs::File;
let out_file = File::create(path)?;
let mut csv_writer = csv::Writer::from_writer(out_file);
let query = crate::schema::metrics::table.inner_join(crate::schema::metric_keys::table);
let query = query
.order(timestamp.asc())
.select((id, timestamp, key, value));
for row in query.load::<JoinedMetric>(&mut self.db)? {
csv_writer.serialize(row)?;
}
csv_writer.flush()?;
Ok(())
}
#[cfg(feature = "import_csv")]
pub fn import_from_csv<S: AsRef<Path>, D: AsRef<Path>>(path: S, destination: D) -> Result<()> {
use crate::InnerState;
use csv::ReaderBuilder;
let db = setup_db(destination)?;
let mut reader = ReaderBuilder::new().from_path(path)?;
let mut inner = InnerState::new(Duration::from_secs(5), db);
let header = reader.headers()?.to_owned();
let mut flush_counter = 0u64;
for record in reader.records() {
match record {
Ok(record) => match record.deserialize::<MetricCsvRow>(Some(&header)) {
Ok(r) => {
if let Err(e) =
inner.queue_metric(Duration::from_secs_f64(r.timestamp), r.key, r.value)
{
error!(
"Skipping record due to error recording metric into DB: {:?}",
e
);
}
flush_counter += 1;
}
Err(e) => {
error!("Skipping record due to error parsing CSV row: {:?}", e);
}
},
Err(e) => {
error!("Skipping record due to error reading CSV record: {:?}", e);
}
}
if flush_counter % 200 == 0 {
trace!("Flushing");
inner.flush()?;
}
}
inner.flush()?;
Ok(())
}
}
#[cfg(feature = "import_csv")]
#[derive(Deserialize)]
struct MetricCsvRow<'a> {
#[allow(unused)]
id: u64,
timestamp: f64,
key: &'a str,
value: f64,
}
#[cfg(feature = "export_csv")]
#[derive(Queryable, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize))]
struct JoinedMetric {
pub id: i64,
pub timestamp: f64,
pub key: String,
pub value: f64,
}