1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*!
 * This module defines routines for dealing with meshes composed of multiple connected components.
 * # Implementation Notes
 *
 * Currently due to the limitations of the Rust language, it is not straightforward (or impossible)
 * to generalize the partition function over types that don't already implement `Eq` and `Hash`, if
 * we wanted to use a `HashMap`. That is we can't generalize the implementation to work with
 * floats or types that contain floats (e.g. arrays and tuples.
 *
 * For this reason there exist two variations of partition functions that work with different
 * assumptions on types.
 */

use crate::attrib::*;
use ahash::AHashMap as HashMap;
use std::hash::Hash;

/*
 * Partition function implementations
 */

/// Partition a given slice by unique values.
///
/// It may be more efficient to implement this function by hand, especially when the number of
/// partitions is known ahead of time.
pub fn partition<'a, T: Hash + Eq + 'a>(iter: impl Iterator<Item = &'a T>) -> (Vec<usize>, usize) {
    let mut partition = Vec::new();
    let mut map: HashMap<&'a T, usize> = HashMap::default();

    let mut part_counter = 0;
    for val in iter {
        let part = map.entry(val).or_insert_with(|| {
            let part = part_counter;
            part_counter += 1;
            part
        });
        partition.push(*part);
    }
    (partition, part_counter)
}

/// Partition a given slice by unique values.
///
/// This version of `partition` is useful when `T` doesn't implement `Eq` and `Hash` or
/// `PartitionHashEq` but has `PartialOrd`. For the majority of use cases it is better to use
/// `partition`.
pub fn partition_slice<T: PartialOrd>(slice: &[T]) -> (Vec<usize>, usize) {
    use std::cmp::Ordering;

    // Sort attrib via an explicit permutation.
    // The permutation then acts as a map from sorted back to unsorted attribs.
    let mut permutation: Vec<_> = (0..slice.len()).collect();

    // SAFETY: permutation indices are guaranteed to be below slice.len();
    permutation.sort_by(|&i, &j| unsafe {
        slice
            .get_unchecked(i)
            .partial_cmp(slice.get_unchecked(j))
            .unwrap_or(Ordering::Less)
    });

    let mut permutation_iter = permutation
        .iter()
        .map(|&i| (i, unsafe { slice.get_unchecked(i) }))
        .peekable();
    let mut partition = vec![0; slice.len()];
    let mut part_counter = 0;

    while let Some((pi, val)) = permutation_iter.next() {
        unsafe { *partition.get_unchecked_mut(pi) = part_counter };
        if permutation_iter.peek().map_or(true, |next| val != next.1) {
            part_counter += 1;
        }
    }

    (partition, part_counter)
}

pub trait Partition
where
    Self: Sized,
{
    /// Returns a partitioning by unique values of the given attribute.
    ///
    /// The returned vector consists of a ID assigned to each `Src` element identifying which
    /// partition it belongs to along with the total number of partitions.
    ///
    /// The attribute values must have type `T`.
    ///
    /// If `attrib` doesn't exist at the `Src` topology, the returned vector will consist of all
    /// zeros and the number of partitions will be 1.
    fn partition_by_attrib<T: AttributeValueHash, Src: AttribIndex<Self>>(
        &self,
        attrib: &str,
    ) -> (Vec<usize>, usize);

    /// Returns a partitioning by unique values of the given attribute.
    ///
    /// The returned vector consists of a ID assigned to each `Src` element identifying which
    /// partition it belongs to along with the total number of partitions.
    ///
    /// The attribute values must have type `T`.
    ///
    /// If `attrib` doesn't exist at the `Src` topology, the returned vector will consist of all
    /// zeros and the number of partitions will be 1.
    ///
    /// This version of `partition_by_attrib` uses sorting to determine unique values instead of a
    /// `HashMap`, and therefore only relies on `T` being `PartialOrd` but not `Eq` and `Hash`.
    fn partition_by_attrib_by_sort<T: PartialOrd + AttributeValue, Src: AttribIndex<Self>>(
        &self,
        attrib: &str,
    ) -> (Vec<usize>, usize);
}

impl<M> Partition for M
where
    Self: Attrib + Sized,
{
    #[inline]
    fn partition_by_attrib<T: AttributeValueHash, Src: AttribIndex<Self>>(
        &self,
        attrib: &str,
    ) -> (Vec<usize>, usize) {
        if let Ok(attrib_iter) = self.attrib_iter::<T, Src>(attrib) {
            partition(attrib_iter)
        } else {
            (vec![0; self.attrib_size::<Src>()], 1)
        }
    }

    #[inline]
    fn partition_by_attrib_by_sort<T: PartialOrd + AttributeValue, Src: AttribIndex<Self>>(
        &self,
        attrib: &str,
    ) -> (Vec<usize>, usize) {
        match self.attrib_as_slice::<T, Src>(attrib) {
            Ok(attrib) => partition_slice(attrib),
            Err(_) => (vec![0; self.attrib_size::<Src>()], 1),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::mesh::topology::*;
    use crate::mesh::{PointCloud, TetMeshExt};

    #[test]
    fn tetmesh_partition_by_attrib() {
        // The vertex positions are actually unimportant here.
        let verts = vec![[0.0; 3]; 12];

        // Topology is also unimportant for partitioning by attributes.
        let indices = vec![[0, 1, 2, 3], [1, 2, 3, 4], [5, 6, 7, 8], [8, 9, 10, 11]];

        let mut tetmesh = TetMeshExt::new(verts, indices);

        // Add an attribute that partitions out the first and last 2 vertices, which correspond to a whole
        // tet.
        tetmesh
            .insert_attrib_data::<usize, VertexIndex>(
                "attrib",
                vec![1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1],
            )
            .unwrap();

        // The resulting mesh must be identical
        assert_eq!(
            tetmesh.partition_by_attrib::<usize, VertexIndex>("attrib"),
            (vec![0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], 2)
        );
    }

    fn partition_data(size: usize, nbins: usize) -> Vec<[usize; 3]> {
        use rand::distributions::Uniform;
        use rand::prelude::*;

        let seed = [3u8; 32];
        let mut rng = StdRng::from_seed(seed);

        let index_bins = Uniform::from(0..nbins);

        let bins: Vec<[usize; 3]> = (0..nbins)
            .map(|_| [rng.gen(), rng.gen(), rng.gen()])
            .collect();

        (0..size)
            .map(|_| bins[index_bins.sample(&mut rng)])
            .collect()
    }

    #[test]
    fn partition_by_attrib_complex() {
        use rand::prelude::*;
        let size = 10;
        let seed = [3u8; 32];
        let mut rng = StdRng::from_seed(seed);

        // The vertex positions are actually unimportant here.
        let verts: Vec<[f64; 3]> = (0..size)
            .map(|_| [rng.gen(), rng.gen(), rng.gen()])
            .collect();
        let mut ptcld = PointCloud::new(verts);

        let data = partition_data(size, 10);
        ptcld
            .insert_attrib_data::<_, VertexIndex>("attrib", data)
            .unwrap();

        let (_, num_parts1) = ptcld.partition_by_attrib::<[usize; 3], VertexIndex>("attrib");
        let (_, num_parts2) =
            ptcld.partition_by_attrib_by_sort::<[usize; 3], VertexIndex>("attrib");
        assert_eq!(num_parts1, num_parts2);
    }

    #[test]
    fn partition_by_attrib_by_hash() {
        use rand::prelude::*;
        let size = 100_000;
        let seed = [3u8; 32];
        let mut rng = StdRng::from_seed(seed);

        // The vertex positions are actually unimportant here.
        let verts: Vec<[f64; 3]> = (0..size)
            .map(|_| [rng.gen(), rng.gen(), rng.gen()])
            .collect();
        let mut ptcld = PointCloud::new(verts);

        let data = partition_data(size, 100);
        ptcld
            .insert_attrib_data::<_, VertexIndex>("attrib", data)
            .unwrap();

        let now = std::time::Instant::now();
        let (_, num_parts) = ptcld.partition_by_attrib::<[usize; 3], VertexIndex>("attrib");
        eprintln!("hash time = {}", now.elapsed().as_millis());
        eprintln!("{}", num_parts);
    }

    #[test]
    fn partition_by_attrib_by_sort() {
        use rand::prelude::*;
        let size = 100_000;
        let seed = [3u8; 32];
        let mut rng = StdRng::from_seed(seed);

        // The vertex positions are actually unimportant here.
        let verts: Vec<[f64; 3]> = (0..size)
            .map(|_| [rng.gen(), rng.gen(), rng.gen()])
            .collect();
        let mut ptcld = PointCloud::new(verts);

        let data = partition_data(size, 100);
        ptcld
            .insert_attrib_data::<_, VertexIndex>("attrib", data)
            .unwrap();

        let now = std::time::Instant::now();
        let (_, num_parts) = ptcld.partition_by_attrib_by_sort::<[usize; 3], VertexIndex>("attrib");
        eprintln!("sort time = {}", now.elapsed().as_millis());
        eprintln!("{}", num_parts);
    }
}