1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
//! Index buffer encoding and decoding

use crate::INVALID_INDEX;

use std::io::{Read, Write};

use super::{decode_v_byte, encode_v_byte, read_byte, write_byte, DecodeError, IndexEncodingVersion};

const INDEX_HEADER: u8 = 0xe0;

type VertexFifo = [u32; 16];

const DEFAULT_VERTEX_FIFO: VertexFifo = [INVALID_INDEX; 16];

type EdgeFifo = [[u32; 2]; 16];

const DEFAULT_EDGE_FIFO: EdgeFifo = [[INVALID_INDEX; 2]; 16];

const TRIANGLE_INDEX_ORDER: [[usize; 3]; 3] = [[0, 1, 2], [1, 2, 0], [2, 0, 1]];

const CODE_AUX_ENCODING_TABLE: [u8; 16] = [
    0x00, 0x76, 0x87, 0x56, 0x67, 0x78, 0xa9, 0x86, 0x65, 0x89, 0x68, 0x98, 0x01, 0x69, 0,
    0, // last two entries aren't used for encoding
];

fn rotate_triangle(b: u32, c: u32, next: u32) -> i32 {
    if b == next {
        1
    } else {
        if c == next {
            2
        } else {
            0
        }
    }
}

fn get_edge_fifo(fifo: &EdgeFifo, a: u32, b: u32, c: u32, offset: usize) -> i32 {
    for i in 0..16 {
        let index = (offset.wrapping_sub(i + 1)) & 15;

        let e0 = fifo[index][0];
        let e1 = fifo[index][1];

        if e0 == a && e1 == b {
            return ((i << 2) | 0) as i32;
        }

        if e0 == b && e1 == c {
            return ((i << 2) | 1) as i32;
        }

        if e0 == c && e1 == a {
            return ((i << 2) | 2) as i32;
        }
    }

    -1
}

#[inline(always)]
fn push_edge_fifo(fifo: &mut EdgeFifo, a: u32, b: u32, offset: &mut usize) {
    fifo[*offset][0] = a;
    fifo[*offset][1] = b;
    *offset = (*offset + 1) & 15;
}

fn get_vertex_fifo(fifo: &VertexFifo, v: u32, offset: usize) -> i32 {
    for i in 0..16 {
        let index = (offset.wrapping_sub(i + 1)) & 15;

        if fifo[index] == v {
            return i as i32;
        }
    }

    -1
}

#[inline(always)]
fn push_vertex_fifo(fifo: &mut VertexFifo, v: u32, offset: &mut usize, cond: Option<bool>) {
    fifo[*offset] = v;
    *offset = (*offset + cond.unwrap_or(true) as usize) & 15;
}

fn encode_index<W: Write>(data: &mut W, index: u32, last: u32) {
    let d = index.wrapping_sub(last);
    let v = (d << 1) ^ (((d as i32) >> 31) as u32);

    encode_v_byte(data, v);
}

fn decode_index<R: Read>(data: &mut R, last: u32) -> u32 {
    let v = decode_v_byte(data);
    let d = (v >> 1) ^ (-((v & 1) as i32) as u32);

    last.wrapping_add(d)
}

fn get_code_aux_index(v: u8, table: &[u8]) -> i32 {
    table[0..16]
        .iter()
        .position(|t| *t == v)
        .map(|t| t as i32)
        .unwrap_or(-1)
}

fn write_triangle<T>(destination: &mut [T], a: u32, b: u32, c: u32)
where
    T: Copy + From<u32>,
{
    destination.copy_from_slice(&[T::from(a), T::from(b), T::from(c)]);
}

/// Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original.
///
/// Input index buffer must represent a triangle list.
///
/// Returns encoded data size on success, `None` on error; the only error condition is if `buffer` doesn't have enough space.
///
/// For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first.
///
/// # Arguments
///
/// * `buffer`: must contain enough space for the encoded index buffer (use [encode_index_buffer_bound] to compute worst case size)
pub fn encode_index_buffer(mut buffer: &mut [u8], indices: &[u32], version: IndexEncodingVersion) -> Option<usize> {
    assert!(indices.len() % 3 == 0);

    let buffer_len = buffer.len();

    // the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table
    if buffer_len < 1 + indices.len() / 3 + 16 {
        return None;
    }

    let version: u8 = version.into();

    write_byte(&mut buffer, INDEX_HEADER | version);

    let mut edgefifo = DEFAULT_EDGE_FIFO;
    let mut vertexfifo = DEFAULT_VERTEX_FIFO;

    let mut edgefifooffset = 0;
    let mut vertexfifooffset = 0;

    let mut next = 0;
    let mut last = 0;

    let (mut code, mut data) = buffer.split_at_mut(indices.len() / 3);

    let fecmax = if version >= 1 { 13 } else { 15 };

    // use static encoding table; it's possible to pack the result and then build an optimal table and repack
    // for now we keep it simple and use the table that has been generated based on symbol frequency on a training mesh set
    let codeaux_table = CODE_AUX_ENCODING_TABLE;

    for i in (0..indices.len()).step_by(3) {
        // make sure we have enough space to write a triangle
        // each triangle writes at most 16 bytes: 1b for codeaux and 5b for each free index
        // after this we can be sure we can write without extra bounds checks
        if data.len() < 16 {
            return None;
        }

        let fer = get_edge_fifo(
            &edgefifo,
            indices[i + 0],
            indices[i + 1],
            indices[i + 2],
            edgefifooffset,
        );

        if fer >= 0 && (fer >> 2) < 15 {
            let order = TRIANGLE_INDEX_ORDER[(fer & 3) as usize];

            let a = indices[i + order[0]];
            let b = indices[i + order[1]];
            let c = indices[i + order[2]];

            // encode edge index and vertex fifo index, next or free index
            let fe = fer >> 2;
            let fc = get_vertex_fifo(&vertexfifo, c, vertexfifooffset);

            let mut fec = if fc >= 1 && fc < fecmax {
                fc
            } else {
                if c == next {
                    next += 1;
                    0
                } else {
                    15
                }
            };

            if fec == 15 && version >= 1 {
                // encode last-1 and last+1 to optimize strip-like sequences
                if c + 1 == last {
                    fec = 13;
                    last = c;
                }
                if c == last + 1 {
                    fec = 14;
                    last = c;
                }
            }

            write_byte(&mut code, ((fe << 4) | fec) as u8);

            // note that we need to update the last index since free indices are delta-encoded
            if fec == 15 {
                encode_index(&mut data, c, last);
                last = c;
            }

            // we only need to push third vertex since first two are likely already in the vertex fifo
            if fec == 0 || fec >= fecmax {
                push_vertex_fifo(&mut vertexfifo, c, &mut vertexfifooffset, None);
            }

            // we only need to push two new edges to edge fifo since the third one is already there
            push_edge_fifo(&mut edgefifo, c, b, &mut edgefifooffset);
            push_edge_fifo(&mut edgefifo, a, c, &mut edgefifooffset);
        } else {
            let rotation = rotate_triangle(indices[i + 1], indices[i + 2], next);
            let order = TRIANGLE_INDEX_ORDER[rotation as usize];

            let a = indices[i + order[0]];
            let b = indices[i + order[1]];
            let c = indices[i + order[2]];

            // if a/b/c are 0/1/2, we emit a reset code
            let mut reset = false;

            if a == 0 && b == 1 && c == 2 && next > 0 && version >= 1 {
                reset = true;
                next = 0;

                // reset vertex fifo to make sure we don't accidentally reference vertices from that in the future
                // this makes sure next continues to get incremented instead of being stuck
                vertexfifo = DEFAULT_VERTEX_FIFO;
            }

            let fb = get_vertex_fifo(&vertexfifo, b, vertexfifooffset);
            let fc = get_vertex_fifo(&vertexfifo, c, vertexfifooffset);

            // after rotation, a is almost always equal to next, so we don't waste bits on FIFO encoding for a
            let fea = if a == next {
                next += 1;
                0
            } else {
                15
            };
            let feb = if fb >= 0 && fb < 14 {
                fb + 1
            } else {
                if b == next {
                    next += 1;
                    0
                } else {
                    15
                }
            };
            let fec = if fc >= 0 && fc < 14 {
                fc + 1
            } else {
                if c == next {
                    next += 1;
                    0
                } else {
                    15
                }
            };

            // we encode feb & fec in 4 bits using a table if possible, and as a full byte otherwise
            let codeaux = ((feb << 4) | fec) as u8;
            let codeauxindex = get_code_aux_index(codeaux, &codeaux_table);

            // <14 encodes an index into codeaux table, 14 encodes fea=0, 15 encodes fea=15
            if fea == 0 && codeauxindex >= 0 && codeauxindex < 14 && !reset {
                write_byte(&mut code, ((15 << 4) | codeauxindex) as u8);
            } else {
                write_byte(&mut code, ((15 << 4) | 14 | fea) as u8);
                write_byte(&mut data, codeaux);
            }

            // note that we need to update the last index since free indices are delta-encoded
            if fea == 15 {
                encode_index(&mut data, a, last);
                last = a;
            }

            if feb == 15 {
                encode_index(&mut data, b, last);
                last = b;
            }

            if fec == 15 {
                encode_index(&mut data, c, last);
                last = c;
            }

            // only push vertices that weren't already in fifo
            if fea == 0 || fea == 15 {
                push_vertex_fifo(&mut vertexfifo, a, &mut vertexfifooffset, None);
            }

            if feb == 0 || feb == 15 {
                push_vertex_fifo(&mut vertexfifo, b, &mut vertexfifooffset, None);
            }

            if fec == 0 || fec == 15 {
                push_vertex_fifo(&mut vertexfifo, c, &mut vertexfifooffset, None);
            }

            // all three edges aren't in the fifo; pushing all of them is important so that we can match them for later triangles
            push_edge_fifo(&mut edgefifo, b, a, &mut edgefifooffset);
            push_edge_fifo(&mut edgefifo, c, b, &mut edgefifooffset);
            push_edge_fifo(&mut edgefifo, a, c, &mut edgefifooffset);
        }
    }

    // make sure we have enough space to write codeaux table
    if data.len() < 16 {
        return None;
    }

    // add codeaux encoding table to the end of the stream; this is used for decoding codeaux *and* as padding
    // we need padding for decoding to be able to assume that each triangle is encoded as <= 16 bytes of extra data
    // this is enough space for aux byte + 5 bytes per varint index which is the absolute worst case for any input
    for value in &codeaux_table {
        // decoder assumes that table entries never refer to separately encoded indices
        assert!((value & 0xf) != 0xf && (value >> 4) != 0xf);

        write_byte(&mut data, *value);
    }

    // since we encode restarts as codeaux without a table reference, we need to make sure 00 is encoded as a table reference
    assert_eq!(codeaux_table[0], 0);

    //assert!(data >= buffer + indices.len() / 3 + 16);
    //assert!(data <= buffer + buffer.len());

    Some(buffer_len - data.len())
}

/// Returns worst case size requirement for [encode_index_buffer].
pub fn encode_index_buffer_bound(index_count: usize, vertex_count: usize) -> usize {
    assert_eq!(index_count % 3, 0);

    // compute number of bits required for each index
    let mut vertex_bits = 1;

    while vertex_bits < 32 && vertex_count > (1 << vertex_bits) {
        vertex_bits += 1;
    }

    // worst-case encoding is 2 header bytes + 3 varint-7 encoded index deltas
    let vertex_groups = (vertex_bits + 1 + 6) / 7;

    1 + (index_count / 3) * (2 + 3 * vertex_groups) + 16
}

/// Decodes index data from an array of bytes generated by [encode_index_buffer].
///
/// Returns `Ok` if decoding was successful, and an error otherwise.
/// The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices).
///
/// # Arguments
///
/// * `destination`: must contain the exact space for the resulting index buffer
pub fn decode_index_buffer<T>(destination: &mut [T], buffer: &[u8]) -> Result<(), DecodeError>
where
    T: Copy + From<u32>,
{
    assert_eq!(destination.len() % 3, 0);
    //assert!(index_size == 2 || index_size == 4);

    // the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table
    if buffer.len() < 1 + destination.len() / 3 + 16 {
        return Err(DecodeError::UnexpectedEof);
    }

    if (buffer[0] & 0xf0) != INDEX_HEADER {
        return Err(DecodeError::InvalidHeader);
    }

    let version = buffer[0] & 0x0f;
    if version > 1 {
        return Err(DecodeError::UnsupportedVersion);
    }

    let mut edgefifo = DEFAULT_EDGE_FIFO;
    let mut vertexfifo = DEFAULT_VERTEX_FIFO;

    let mut edgefifooffset: usize = 0;
    let mut vertexfifooffset: usize = 0;

    let mut next: u32 = 0;
    let mut last: u32 = 0;

    let fecmax = if version >= 1 { 13 } else { 15 };

    // since we store 16-byte codeaux table at the end, triangle data has to begin before data_safe_end
    let (mut code, mut data, codeaux_table, data_safe_end) = {
        let (code, data) = buffer[1..].split_at(destination.len() / 3);
        let data_safe_end = data.len() - 16;
        let codeaux_table = &data[data_safe_end..];
        (code, std::io::Cursor::new(data), codeaux_table, data_safe_end)
    };

    for dst in destination.chunks_exact_mut(3) {
        // make sure we have enough data to read for a triangle
        // each triangle reads at most 16 bytes of data: 1b for codeaux and 5b for each free index
        // after this we can be sure we can read without extra bounds checks
        if data.position() > data_safe_end as u64 {
            return Err(DecodeError::UnexpectedEof);
        }

        let codetri = read_byte(&mut code) as usize;

        if codetri < 0xf0 {
            let fe = codetri >> 4;

            // fifo reads are wrapped around 16 entry buffer
            let a = edgefifo[(edgefifooffset.wrapping_sub(fe + 1)) & 15][0];
            let b = edgefifo[(edgefifooffset.wrapping_sub(fe + 1)) & 15][1];

            let fec = codetri & 15;

            // note: this is the most common path in the entire decoder
            // inside this if we try to stay branchless (by using cmov/etc.) since these aren't predictable
            if fec < fecmax {
                // fifo reads are wrapped around 16 entry buffer
                let cf = vertexfifo[(vertexfifooffset.wrapping_sub(fec + 1)) & 15];
                let c = if fec == 0 { next } else { cf };

                let fec0 = fec == 0;
                next += fec0 as u32;

                // output triangle
                write_triangle(dst, a, b, c);

                // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
                push_vertex_fifo(&mut vertexfifo, c, &mut vertexfifooffset, Some(fec0));

                push_edge_fifo(&mut edgefifo, c, b, &mut edgefifooffset);
                push_edge_fifo(&mut edgefifo, a, c, &mut edgefifooffset);
            } else {
                // fec - (fec ^ 3) decodes 13, 14 into -1, 1
                // note that we need to update the last index since free indices are delta-encoded
                let c = if fec != 15 {
                    last.wrapping_add((fec.wrapping_sub(fec ^ 3)) as u32)
                } else {
                    decode_index(&mut data, last)
                };
                last = c;

                // output triangle
                write_triangle(dst, a, b, c);

                // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
                push_vertex_fifo(&mut vertexfifo, c, &mut vertexfifooffset, None);

                push_edge_fifo(&mut edgefifo, c, b, &mut edgefifooffset);
                push_edge_fifo(&mut edgefifo, a, c, &mut edgefifooffset);
            }
        } else {
            // fast path: read codeaux from the table
            if codetri < 0xfe {
                let codeaux = codeaux_table[codetri & 15];

                // note: table can't contain feb/fec=15
                let feb = codeaux >> 4;
                let fec = codeaux & 15;

                // fifo reads are wrapped around 16 entry buffer
                // also note that we increment next for all three vertices before decoding indices - this matches encoder behavior
                let a = next;
                next += 1;

                let bf = vertexfifo[(vertexfifooffset.wrapping_sub(feb as usize)) & 15];
                let b = if feb == 0 { next } else { bf };

                let feb0 = feb == 0;
                next += feb0 as u32;

                let cf = vertexfifo[(vertexfifooffset.wrapping_sub(fec as usize)) & 15];
                let c = if fec == 0 { next } else { cf };

                let fec0 = fec == 0;
                next += fec0 as u32;

                // output triangle
                write_triangle(dst, a, b, c);

                // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
                push_vertex_fifo(&mut vertexfifo, a, &mut vertexfifooffset, None);
                push_vertex_fifo(&mut vertexfifo, b, &mut vertexfifooffset, Some(feb0));
                push_vertex_fifo(&mut vertexfifo, c, &mut vertexfifooffset, Some(fec0));

                push_edge_fifo(&mut edgefifo, b, a, &mut edgefifooffset);
                push_edge_fifo(&mut edgefifo, c, b, &mut edgefifooffset);
                push_edge_fifo(&mut edgefifo, a, c, &mut edgefifooffset);
            } else {
                // slow path: read a full byte for codeaux instead of using a table lookup
                let codeaux = read_byte(&mut data);

                let fea = if codetri == 0xfe { 0 } else { 15 };
                let feb = codeaux >> 4;
                let fec = codeaux & 15;

                // reset: codeaux is 0 but encoded as not-a-table
                if codeaux == 0 {
                    next = 0;
                }

                // fifo reads are wrapped around 16 entry buffer
                // also note that we increment next for all three vertices before decoding indices - this matches encoder behavior
                let mut a = if fea == 0 {
                    let n = next;
                    next += 1;
                    n
                } else {
                    0
                };
                let mut b = if feb == 0 {
                    let n = next;
                    next += 1;
                    n
                } else {
                    vertexfifo[(vertexfifooffset.wrapping_sub(feb as usize)) & 15]
                };
                let mut c = if fec == 0 {
                    let n = next;
                    next += 1;
                    n
                } else {
                    vertexfifo[(vertexfifooffset.wrapping_sub(fec as usize)) & 15]
                };

                // note that we need to update the last index since free indices are delta-encoded
                if fea == 15 {
                    a = decode_index(&mut data, last);
                    last = a;
                }

                if feb == 15 {
                    b = decode_index(&mut data, last);
                    last = b;
                }

                if fec == 15 {
                    c = decode_index(&mut data, last);
                    last = c;
                }

                // output triangle
                write_triangle(dst, a, b, c);

                // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
                push_vertex_fifo(&mut vertexfifo, a, &mut vertexfifooffset, None);
                push_vertex_fifo(
                    &mut vertexfifo,
                    b,
                    &mut vertexfifooffset,
                    Some((feb == 0) | (feb == 15)),
                );
                push_vertex_fifo(
                    &mut vertexfifo,
                    c,
                    &mut vertexfifooffset,
                    Some((fec == 0) | (fec == 15)),
                );

                push_edge_fifo(&mut edgefifo, b, a, &mut edgefifooffset);
                push_edge_fifo(&mut edgefifo, c, b, &mut edgefifooffset);
                push_edge_fifo(&mut edgefifo, a, c, &mut edgefifooffset);
            }
        }
    }

    if data.position() == data_safe_end as u64 {
        Ok(())
    } else {
        // we should've read all data bytes and stopped at the boundary between data and codeaux table
        Err(DecodeError::ExtraBytes)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    // note: 4 6 5 triangle here is a combo-breaker:
    // we encode it without rotating, a=next, c=next - this means we do *not* bump next to 6
    // which means that the next triangle can't be encoded via next sequencing!
    const INDEX_BUFFER: [u32; 12] = [0, 1, 2, 2, 1, 3, 4, 6, 5, 7, 8, 9];

    const INDEX_DATA_V0: [u8; 27] = [
        0xe0, 0xf0, 0x10, 0xfe, 0xff, 0xf0, 0x0c, 0xff, 0x02, 0x02, 0x02, 0x00, 0x76, 0x87, 0x56, 0x67, 0x78, 0xa9,
        0x86, 0x65, 0x89, 0x68, 0x98, 0x01, 0x69, 0x00, 0x00,
    ];

    // note: this exercises two features of v1 format, restarts (0 1 2) and last
    const INDEX_BUFFER_TRICKY: [u32; 15] = [0, 1, 2, 2, 1, 3, 0, 1, 2, 2, 1, 5, 2, 1, 4];

    const INDEX_DATA_V1: [u8; 24] = [
        0xe1, 0xf0, 0x10, 0xfe, 0x1f, 0x3d, 0x00, 0x0a, 0x00, 0x76, 0x87, 0x56, 0x67, 0x78, 0xa9, 0x86, 0x65, 0x89,
        0x68, 0x98, 0x01, 0x69, 0x00, 0x00,
    ];

    #[test]
    fn test_decode_index_v0() {
        let mut decoded: [u32; INDEX_BUFFER.len()] = Default::default();

        assert!(decode_index_buffer(&mut decoded, &INDEX_DATA_V0).is_ok());
        assert_eq!(decoded, INDEX_BUFFER);
    }

    #[test]
    fn test_decode_index_v1() {
        let mut decoded: [u32; INDEX_BUFFER_TRICKY.len()] = Default::default();

        assert!(decode_index_buffer(&mut decoded, &INDEX_DATA_V1).is_ok());
        assert_eq!(decoded, INDEX_BUFFER_TRICKY);
    }

    #[test]
    fn test_decode_index_16() {
        let buffer = encode_test_index();

        #[derive(Clone, Copy, Default)]
        struct U16(u16);

        impl From<u32> for U16 {
            fn from(index: u32) -> Self {
                Self { 0: index as u16 }
            }
        }

        let mut decoded = [U16::default(); INDEX_BUFFER.len()];
        assert!(decode_index_buffer(&mut decoded, &buffer).is_ok());

        assert!(decoded.iter().enumerate().all(|(i, v)| v.0 as u32 == INDEX_BUFFER[i]));
    }

    #[test]
    fn test_encode_index_memory_safe() {
        let mut buffer = encode_test_index();

        // check that encode is memory-safe
        for i in 0..=buffer.len() {
            let result = encode_index_buffer(&mut buffer[0..i], &INDEX_BUFFER, IndexEncodingVersion::default());

            if i == buffer.len() {
                assert_eq!(result, Some(buffer.len()));
            } else {
                assert_eq!(result, None);
            }
        }
    }

    fn encode_test_index() -> Vec<u8> {
        let mut buffer = vec![0; encode_index_buffer_bound(INDEX_BUFFER.len(), 10)];

        let written = encode_index_buffer(&mut buffer, &INDEX_BUFFER, IndexEncodingVersion::default()).unwrap();
        buffer.resize_with(written, Default::default);

        buffer
    }

    #[test]
    fn test_decode_index_memory_safe() {
        let buffer = encode_test_index();

        // check that decode is memory-safe
        let mut decoded: [u32; INDEX_BUFFER.len()] = Default::default();

        for i in 0..=buffer.len() {
            let result = decode_index_buffer(&mut decoded, &buffer[0..i]);

            if i == buffer.len() {
                assert!(result.is_ok());
            } else {
                assert!(result.is_err());
            }
        }
    }

    #[test]
    fn test_decode_index_reject_extra_bytes() {
        let mut buffer = encode_test_index();

        // check that decoder doesn't accept extra bytes after a valid stream
        buffer.push(0);

        let mut decoded: [u32; INDEX_BUFFER.len()] = Default::default();
        assert!(decode_index_buffer(&mut decoded, &buffer).is_err());
    }

    #[test]
    fn test_decode_index_reject_malformed_headers() {
        let mut buffer = encode_test_index();

        // check that decoder doesn't accept malformed headers
        buffer[0] = 0;

        let mut decoded: [u32; INDEX_BUFFER.len()] = Default::default();
        assert!(decode_index_buffer(&mut decoded, &buffer).is_err());
    }

    #[test]
    fn test_decode_index_reject_invalid_version() {
        let mut buffer = encode_test_index();

        // check that decoder doesn't accept invalid version
        buffer[0] |= 0x0f;

        let mut decoded: [u32; INDEX_BUFFER.len()] = Default::default();
        assert!(decode_index_buffer(&mut decoded, &buffer).is_err());
    }

    #[test]
    fn test_roundtrip_index_tricky() {
        let mut buffer = Vec::new();
        buffer.resize_with(
            encode_index_buffer_bound(INDEX_BUFFER_TRICKY.len(), 6),
            Default::default,
        );

        let written = encode_index_buffer(&mut buffer, &INDEX_BUFFER_TRICKY, IndexEncodingVersion::default()).unwrap();
        buffer.resize_with(written, Default::default);

        let mut decoded: [u32; INDEX_BUFFER_TRICKY.len()] = Default::default();
        assert!(decode_index_buffer(&mut decoded, &buffer).is_ok());
        assert_eq!(decoded, INDEX_BUFFER_TRICKY);
    }

    #[test]
    fn test_encode_index_empty() {
        let mut buffer = Vec::new();
        buffer.resize_with(encode_index_buffer_bound(0, 0), Default::default);

        let written = encode_index_buffer(&mut buffer, &[], IndexEncodingVersion::default()).unwrap();
        buffer.resize_with(written, Default::default);

        assert!(decode_index_buffer::<u32>(&mut [], &buffer).is_ok());
    }
}