1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/// Quantizes a float in [0..1] range into an n-bit fixed point unorm value.
///
/// Assumes reconstruction function `q / (2^n-1)`, which is the case for fixed-function normalized fixed point conversion.
///
/// Maximum reconstruction error: `1/2^(n+1)`
pub fn quantize_unorm(mut v: f32, n: i32) -> i32 {
let scale = ((1 << n) - 1) as f32;
v = if v >= 0.0 { v } else { 0.0 };
v = if v <= 1.0 { v } else { 1.0 };
(v * scale + 0.5) as i32
}
/// Quantizes a float in [-1..1] range into an n-bit fixed point snorm value.
///
/// Assumes reconstruction function `q / (2^(n-1)-1)`, which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions).
///
/// Maximum reconstruction error: `1/2^n`
pub fn quantize_snorm(mut v: f32, n: i32) -> i32 {
let scale = ((1 << (n - 1)) - 1) as f32;
let round = if v >= 0.0 { 0.5 } else { -0.5 };
v = if v >= -1.0 { v } else { -1.0 };
v = if v <= 1.0 { v } else { 1.0 };
(v * scale + round) as i32
}
/// Quantizes a float into half-precision floating point value.
///
/// Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest.
///
/// Representable magnitude range: `[6e-5; 65504]`
///
/// Maximum relative reconstruction error: `5e-4`
pub fn quantize_half(v: f32) -> u16 {
let ui: u32 = unsafe { std::mem::transmute(v) };
let s = (ui >> 16) & 0x8000;
let em = ui & 0x7fffffff;
/* bias exponent and round to nearest; 112 is relative exponent bias (127-15) */
let mut h = (em.wrapping_sub(112 << 23).wrapping_add(1 << 12)) >> 13;
/* underflow: flush to zero; 113 encodes exponent -14 */
h = if em < (113 << 23) { 0 } else { h };
/* overflow: infinity; 143 encodes exponent 16 */
h = if em >= (143 << 23) { 0x7c00 } else { h };
/* NaN; note that we convert all types of NaN to qNaN */
h = if em > (255 << 23) { 0x7e00 } else { h };
(s | h) as u16
}
/// Quantizes a float into a floating point value with a limited number of significant mantissa bits.
///
/// Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest.
///
/// Assumes `n` is in a valid mantissa precision range, which is 1..23
pub fn quantize_float(v: f32, n: i32) -> f32 {
let mut ui: u32 = unsafe { std::mem::transmute(v) };
let mask: u32 = (1 << (23 - n)) - 1;
let round = (1 << (23 - n)) >> 1;
let e = ui & 0x7f800000;
let rui = (ui + round) & (!mask);
// round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0
ui = if e == 0x7f800000 { ui } else { rui };
// flush denormals to zero
ui = if e == 0 { 0 } else { ui };
unsafe { std::mem::transmute(ui) }
}