1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
use std::{fmt::Debug, marker::PhantomData};
use siphasher::sip128::SipHasher24;
use crate::{
diff::PageRange,
digest::{self, siphash::SipHasher, Hasher, RootHash, ValueDigest},
node::Node,
node_iter::NodeIter,
page::{insert_intermediate_page, Page},
visitor::{page_range_hash::PageRangeHashVisitor, Visitor},
UpsertResult,
};
/// An alias for the default hash implementation.
type DefaultHasher = SipHasher;
/// An implementation of the Merkle Search Tree as described in [Merkle Search
/// Trees: Efficient State-Based CRDTs in Open Networks][paper].
///
/// This implementation stores only keys directly in the tree - hashes of values
/// are retained instead of the actual value. This allows greatest flexibility,
/// as the user can choose the most appropriate key/value storage data
/// structure, while using the MST strictly for anti-entropy / Merkle proofs.
///
/// # Merkle Search Trees
///
/// In addition to the normal hash & consistency properties of a regular
/// Merkle/hash tree, a MST is a searchable balanced B-tree with variable,
/// probabilistically bounded page sizes and a deterministic representation
/// irrespective of insert order - these properties make a MST a useful data
/// structure for efficient state-based CRDT replication and anti-entropy.
///
/// Keys are stored in sort order (from min to max) in an MST. If monotonic keys
/// are inserted, a minimal amount of hash re-computation needs to be performed
/// as the nodes & pages for most of the older keys remain unchanged; this
/// reduces the overhead of anti-entropy as fewer intermediate hashes need
/// recomputing and exchanging during reconciliation.
///
/// # Portability & Compatibility
///
/// For two [`MerkleSearchTree`] to be useful, both instances must produce
/// identical hash digests for a given input. To do so, they must be using the
/// same [`Hasher`] implementation, and in turn it must output a deterministic
/// hash across all peers interacting with the [`MerkleSearchTree`].
///
/// For ease of use, this library uses the standard library [`Hash`] trait by
/// default to hash key and value types. The documentation for the trait warns
/// it is not guaranteed to produce identical hashes for the same data across
/// different compilation platforms and Rust compiler versions.
///
/// If you intend to interact with peers across multiple platforms and/or Rust
/// versions, you should consider implementing a fully-deterministic [`Hasher`]
/// specialised to your key/value types that does not make use of the [`Hash`]
/// trait for correctness.
///
/// Any change to the underlying hash construction algorithm implemented in this
/// crate that would cause existing hashes to no longer match will not occur
/// without a breaking change major semver version bump once this crate reaches
/// stability (>=1.0.0).
///
/// # Lazy Tree Hash Generation
///
/// Each page within the tree maintains a cache of the pre-computed hash of
/// itself, and the sub-tree rooted from it (all pages & nodes below it).
/// Successive root hash queries will re-use this cached value to avoid hashing
/// the full tree each time.
///
/// Upserting elements into the tree invalidates the cached hashes of the pages
/// along the path to the leaf, and the leaf page itself. To amortise the cost
/// of regenerating these hashes, the affected pages are marked as "dirty",
/// causing them to be rehashed next time the root hash is requested. This
/// allows hash regeneration to be occur once per batch of upsert operations.
///
/// # Example
///
/// ```
/// use merkle_search_tree::MerkleSearchTree;
///
/// let mut t = MerkleSearchTree::default();
/// t.upsert("bananas", &"great");
/// t.upsert("plátano", &"muy bien");
///
/// // Obtain a root hash / merkle proof covering all the tree data
/// let hash_1 = t.root_hash().to_owned();
/// println!("{:?}", hash_1.as_ref());
///
/// // Modify the MST, reflecting the new value of an existing key
/// t.upsert("bananas", &"amazing");
///
/// // Obtain an updated root hash
/// let hash_2 = t.root_hash().to_owned();
/// println!("{:?}", hash_2);
///
/// // The root hash changes to reflect the changed state
/// assert_ne!(hash_1.as_ref(), hash_2.as_ref());
/// ```
///
/// [paper]: https://inria.hal.science/hal-02303490
#[derive(Debug, Clone)]
pub struct MerkleSearchTree<K, V, H = DefaultHasher, const N: usize = 16> {
/// User-provided hasher implementation used for key/value digests.
hasher: H,
/// Internal hasher used to produce page/root digests.
tree_hasher: SipHasher24,
root: Page<N, K>,
root_hash: Option<RootHash>,
_value_type: PhantomData<V>,
}
impl<K, V> Default for MerkleSearchTree<K, V> {
fn default() -> Self {
Self {
hasher: SipHasher::default(),
tree_hasher: SipHasher24::default(),
root: Page::new(0, vec![]),
root_hash: None,
_value_type: Default::default(),
}
}
}
impl<K, V, H, const N: usize> MerkleSearchTree<K, V, H, N> {
/// Initialise a new [`MerkleSearchTree`] using the provided [`Hasher`] of
/// keys & values.
pub fn new_with_hasher(hasher: H) -> Self {
Self {
hasher,
tree_hasher: SipHasher24::default(),
root: Page::new(0, vec![]),
root_hash: None,
_value_type: PhantomData,
}
}
/// Return the precomputed root hash, if any.
///
/// This method never performs any hashing - if there's no precomputed hash
/// available, this immediately returns [`None`]. This operation is `O(1)`.
///
/// If this returns [`None`], call [`MerkleSearchTree::root_hash()`] to
/// regenerate the root hash.
#[inline]
pub fn root_hash_cached(&self) -> Option<&RootHash> {
self.root_hash.as_ref()
}
/// Perform a depth-first, in-order traversal, yielding each [`Page`] and
/// [`Node`] to `visitor`.
///
/// An in-order traversal yields nodes in key order, from min to max.
pub fn in_order_traversal<'a, T>(&'a self, visitor: &mut T)
where
T: Visitor<'a, N, K>,
{
self.root.in_order_traversal(visitor, false);
}
/// Iterate over all [`Node`] in the tree in ascending key order.
///
/// This method can be used to inspect the keys stored in the tree:
///
/// ```
/// # use merkle_search_tree::*;
/// #
/// let mut t = MerkleSearchTree::default();
/// t.upsert("bananas1", &42);
/// t.upsert("bananas3", &42);
/// t.upsert("bananas4", &42);
/// t.upsert("bananas2", &42);
///
/// // Collect the keys within the tree
/// let keys = t.node_iter().map(|v| *v.key()).collect::<Vec<_>>();
///
/// // Nodes are yield in ascending key order:
/// assert_eq!(
/// keys.as_slice(),
/// ["bananas1", "bananas2", "bananas3", "bananas4",]
/// )
/// ```
pub fn node_iter(&self) -> impl Iterator<Item = &'_ Node<N, K>>
where
K: Debug,
{
NodeIter::new(&self.root)
}
}
impl<K, V, H, const N: usize> MerkleSearchTree<K, V, H, N>
where
K: AsRef<[u8]>,
{
/// Generate the root hash if necessary, returning the result.
///
/// If there's a precomputed root hash, it is immediately returned.
///
/// If no cached root hash is available all tree pages with modified child
/// nodes are rehashed and the resulting new root hash is returned.
#[inline]
pub fn root_hash(&mut self) -> &RootHash {
self.root.maybe_generate_hash(&self.tree_hasher);
self.root_hash = self.root.hash().cloned().map(RootHash::new);
#[cfg(feature = "digest_base64")] // Required for display impl
debug!(
root_hash=%self.root_hash.as_ref().unwrap(),
"regenerated root hash"
);
self.root_hash.as_ref().unwrap()
}
/// Serialise the key interval and hash covering each [`Page`] within this
/// tree.
///
/// Page hashes are generated on demand - this method returns [`None`] if
/// the tree needs rehashing (call [`MerkleSearchTree::root_hash()`] and
/// retry).
///
/// Performs a pre-order traversal of all pages within this tree and emits a
/// [`PageRange`] per page that covers the min/max key of the subtree at the
/// given page.
///
/// The first page is the tree root, and as such has a key min/max that
/// equals the min/max of the keys stored within this tree.
///
/// # Reference vs. Owned
///
/// This method borrows the underlying keys within the tree - this avoids
/// cloning the keys that form the page bounds when generating the
/// [`PageRange`] to maximise performance, however this also prevents the
/// caller from mutating the tree whilst holding onto the serialised pages
/// (an immutable reference to the tree).
///
/// If the key type (`K`) implements [`Clone`], a set of owned serialised
/// pages that do not borrow from the tree can be created by constructing a
/// [`PageRangeSnapshot`] from the returned [`PageRange`] array:
///
/// ```
/// # use merkle_search_tree::{*, diff::*};
/// #
/// let mut t = MerkleSearchTree::default();
/// t.upsert("bananas", &42);
///
/// // Rehash the tree before generating the page ranges
/// let _ = t.root_hash();
///
/// // Generate the hashes & page ranges
/// let ranges = t.serialise_page_ranges().unwrap();
///
/// // At this point, attempting to insert into the tree fails because the
/// // tree is already borrowed as immutable.
/// //
/// // Instead clone all the keys and generate a snapshot:
/// let snap = PageRangeSnapshot::from(ranges);
///
/// // And the tree is free to be mutated while `snap` exists!
/// t.upsert("plátanos", &42);
///
/// // The `snap` yields `PageRange` for iteration:
/// assert_eq!(diff(snap.iter(), snap.iter()), vec![]);
/// ```
///
/// [`PageRangeSnapshot`]: crate::diff::PageRangeSnapshot
#[inline]
pub fn serialise_page_ranges(&self) -> Option<Vec<PageRange<'_, K>>>
where
K: PartialOrd,
{
// The tree hash must be up-to-date.
self.root_hash_cached()?;
if self.root.nodes().is_empty() {
return Some(vec![]);
}
let mut v = PageRangeHashVisitor::default();
self.root.in_order_traversal(&mut v, false);
Some(v.finalise())
}
}
impl<K, V, H, const N: usize> MerkleSearchTree<K, V, H, N>
where
K: PartialOrd,
H: Hasher<N, K> + Hasher<N, V>,
{
/// Add or update the value for `key`.
///
/// This method invalidates the cached, precomputed root hash value, if any
/// (even if the value is not modified).
#[inline]
pub fn upsert(&mut self, key: K, value: &'_ V) {
let value_hash = ValueDigest::new(self.hasher.hash(value));
let level = digest::level(&self.hasher.hash(&key));
// Invalidate the root hash - it always changes when a key is upserted.
self.root_hash = None;
if let UpsertResult::InsertIntermediate(key) =
self.root.upsert(key, level, value_hash.clone())
{
// As an optimisation and simplification, if the current root is
// empty, simply replace it with the new root.
if self.root.nodes().is_empty() {
let node = Node::new(key, value_hash, None);
self.root = Page::new(level, vec![node]);
return;
}
insert_intermediate_page(&mut &mut self.root, key, level, value_hash);
}
}
}
#[cfg(test)]
mod tests {
use std::{
collections::{BTreeSet, HashSet},
hash::Hasher as _,
};
use proptest::prelude::*;
use siphasher::sip128::Hasher128;
use super::*;
use crate::{
assert_tree,
digest::{
mock::{LevelKey, MockHasher},
Digest,
},
test_util::IntKey,
visitor::{
assert_count::InvariantAssertCount, assert_order::InvariantAssertOrder, nop::NopVisitor,
},
};
/// A hash implementation that does not rely on the stdlib Hash trait, and
/// therefore produces stable hashes across rust version changes /
/// platforms.
#[derive(Debug, Default)]
struct FixtureHasher;
impl Hasher<16, IntKey> for FixtureHasher {
fn hash(&self, value: &IntKey) -> Digest<16> {
self.hash(&value.unwrap())
}
}
impl Hasher<16, u64> for FixtureHasher {
fn hash(&self, value: &u64) -> Digest<16> {
let mut h = SipHasher24::default();
h.write_u64(*value);
Digest::new(h.finish128().as_bytes())
}
}
#[test]
fn test_hash_fixture() {
let mut t = MerkleSearchTree::new_with_hasher(FixtureHasher::default());
for i in 0..1000 {
t.upsert(IntKey::new(i), &i);
}
// This hash ensures that any changes to this construction do not result
// in existing hashes being invalidated / unequal for the same data.
let fixture_hash = [
57, 77, 199, 66, 89, 217, 207, 166, 136, 181, 45, 80, 108, 80, 94, 3,
];
assert_eq!(t.root_hash().as_ref(), &fixture_hash);
}
#[test]
fn test_level_generation() {
let h = Digest::new([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
assert_eq!(digest::level(&h), 32);
let h = Digest::new([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
assert_eq!(digest::level(&h), 0);
let h = Digest::new([0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
assert_eq!(digest::level(&h), 1);
let h = Digest::new([0, 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
assert_eq!(digest::level(&h), 3);
}
macro_rules! test_insert {
(
$name:ident,
values = [$(($key:expr, $value:expr)),*]
) => {
paste::paste! {
#[test]
fn [<test_ $name>]() {
let mut t = MerkleSearchTree::new_with_hasher(MockHasher::default());
$(
t.upsert($key, $value);
)*
assert_tree!(t)
}
}
};
}
test_insert!(one, values = [(LevelKey::new("key", 0), &"bananas")]);
test_insert!(
one_non_zero_level,
values = [(LevelKey::new("key", 4), &"bananas")]
);
// Assert the tree is ordered by key.
test_insert!(
two_in_order,
values = [
(LevelKey::new("A", 0), &"bananas"),
(LevelKey::new("B", 0), &"bananas")
]
);
// Assert the tree becomes ordered by key.
test_insert!(
two_unordered,
values = [
(LevelKey::new("B", 0), &"bananas"),
(LevelKey::new("A", 0), &"bananas")
]
);
// Insert two values
//
// Level 0 [ A ]
//
// Then insert B, which is destined for level 1, and greater than A;
// therefore B is placed in level 1 as the new root, and A/level 0 is
// attached to the lt_pointer of B.
test_insert!(
root_split_page_gt,
values = [
(LevelKey::new("A", 0), &"bananas"),
(LevelKey::new("B", 1), &"bananas")
]
);
// Insert two values
//
// Level 0 [ B ]
//
// Then insert A, which is destined for level 1, and less than B;
// therefore A is placed in level 1 as the new root, and B/level 0 is
// attached to the high page of level 1 because A < B.
test_insert!(
root_split_page_lt,
values = [
(LevelKey::new("B", 0), &"bananas"),
(LevelKey::new("A", 1), &"bananas")
]
);
// Insert two values, the second with a level higher than the first, causing
// the root page to be split, both with differing (non-consecutive) levels.
test_insert!(
root_split_non_zero_step_gt,
values = [
(LevelKey::new("A", 3), &"bananas"),
(LevelKey::new("B", 9), &"bananas")
]
);
// Insert two values, the second with a level higher than the first, causing
// the root page to be split, both with differing (non-consecutive) levels.
test_insert!(
root_split_non_zero_step_lt,
values = [
(LevelKey::new("B", 3), &"bananas"),
(LevelKey::new("A", 9), &"bananas")
]
);
// Insert elements that cause the root to split, and then the child page to
// split. Each successive element causes a new page to be created and added
// to the previous level's high page.
test_insert!(
non_root_page_split_gt,
values = [
(LevelKey::new("A", 6), &"bananas"),
(LevelKey::new("B", 4), &"bananas"),
(LevelKey::new("C", 2), &"bananas")
]
);
test_insert!(
non_root_page_split_lt,
values = [
(LevelKey::new("C", 6), &"bananas"),
(LevelKey::new("B", 4), &"bananas"),
(LevelKey::new("A", 2), &"bananas")
]
);
// Upsert for an existing key does not create more nodes.
test_insert!(
update,
values = [
(LevelKey::new("A", 6), &"bananas"),
(LevelKey::new("A", 6), &"platanos")
]
);
// Upsert for an existing key does not create more nodes.
test_insert!(
split_child_into_two_empty_gte_page,
values = [
(LevelKey::new("A", 5), &"platanos"),
(LevelKey::new("B", 0), &"platanos"),
(LevelKey::new("C", 0), &"platanos"),
(LevelKey::new("D", 1), &"platanos")
]
);
// Upsert for an existing key does not create more nodes.
test_insert!(
split_child_into_two_with_gte_page,
values = [
(LevelKey::new("A", 5), &"platanos"),
(LevelKey::new("B", 0), &"platanos"),
(LevelKey::new("C", 0), &"platanos"),
(LevelKey::new("E", 0), &"platanos"),
(LevelKey::new("D", 1), &"platanos")
]
);
// Ensure that when inserting a node greater than all existing nodes in a
// page, the high page is split if necessary
test_insert!(
greatest_key_splits_high_page,
values = [
(LevelKey::new(11, 1), &"bananas"),
(LevelKey::new(10, 2), &"bananas"),
(LevelKey::new(12, 2), &"bananas")
]
);
// When inserting an intermediate page, ensure the high-page of the
// less-than split is processed.
test_insert!(
intermediate_page_move_all_nodes_and_high_page,
values = [
(LevelKey::new(1, 1), &"bananas"),
(LevelKey::new(2, 1), &"bananas"),
(LevelKey::new(4, 0), &"bananas"),
(LevelKey::new(3, 2), &"bananas")
]
);
test_insert!(
intermediate_page_move_all_nodes_and_high_page_subset,
values = [
(LevelKey::new(1, 1), &"bananas"),
(LevelKey::new(2, 1), &"bananas"),
(LevelKey::new(3, 0), &"bananas"),
(LevelKey::new(5, 0), &"bananas"),
(LevelKey::new(4, 2), &"bananas")
]
);
test_insert!(
child_page_split_add_intermediate,
values = [
(LevelKey::new("K", 2), &"bananas"),
(LevelKey::new("D", 0), &"bananas"),
(LevelKey::new("E", 1), &"bananas")
]
);
test_insert!(
equal_page_move_all_nodes_and_high_page,
values = [
(LevelKey::new(2_usize, 64), &"bananas"),
(LevelKey::new(5_usize, 20), &"bananas"),
(LevelKey::new(3_usize, 52), &"bananas"),
(LevelKey::new(4_usize, 64), &"bananas")
]
);
test_insert!(
equal_page_move_all_nodes_and_high_page_subset,
values = [
(LevelKey::new(2_usize, 64), &"bananas"),
(LevelKey::new(6_usize, 20), &"bananas"),
(LevelKey::new(4_usize, 20), &"bananas"),
(LevelKey::new(3_usize, 52), &"bananas"),
(LevelKey::new(5_usize, 64), &"bananas")
]
);
test_insert!(
split_page_all_gte_nodes_with_lt_pointer,
values = [
(LevelKey::new(1, 0), &"bananas"),
(LevelKey::new(0, 1), &"bananas")
]
);
test_insert!(
split_page_all_lt_nodes_with_high_page,
values = [
(LevelKey::new(0, 0), &"bananas"),
(LevelKey::new(1, 1), &"bananas")
]
);
test_insert!(
insert_intermediate_recursive_lt_pointer,
values = [
(LevelKey::new(1_usize, 1), &""),
(LevelKey::new(2_usize, 0), &""),
(LevelKey::new(4_usize, 1), &""),
(LevelKey::new(3_usize, 2), &"")
]
);
test_insert!(
split_page_move_gte_lt_pointer_to_high_page,
values = [
(LevelKey::new(1_usize, 1), &""),
(LevelKey::new(2_usize, 0), &""),
(LevelKey::new(4_usize, 1), &""),
(LevelKey::new(3_usize, 2), &"")
]
);
test_insert!(
split_page_move_input_high_page_to_gte_page,
values = [
(LevelKey::new(6, 0), &"bananas"),
(LevelKey::new(3, 21), &"bananas"),
(LevelKey::new(0, 21), &"bananas"),
(LevelKey::new(1, 22), &"bananas")
]
);
proptest! {
// Invariant 1: the tree structure is deterministic for a given set of
// inputs (regardless of insert order)
#[test]
fn prop_deterministic_construction(keys in proptest::collection::vec(any::<u64>(), 0..64)) {
// keys is a HashSet of (keys, level), which will iterate in random
// order.
//
// Collect the items into a vector and sort it, producing a
// different insert ordering from the HashSet iter.
let mut b_values = keys.to_vec();
b_values.sort();
b_values.dedup();
let a_values = keys;
let mut a = MerkleSearchTree::default();
let mut b = MerkleSearchTree::default();
let want_len = b_values.len();
let mut unique = HashSet::new();
for key in a_values {
if unique.insert(key) {
a.upsert(IntKey::new(key), &"bananas");
}
}
for key in b_values {
b.upsert(IntKey::new(key), &"bananas");
}
assert_node_equal(&mut a, &mut b);
let mut asserter = InvariantAssertCount::new(InvariantAssertOrder::new(NopVisitor::default()));
a.in_order_traversal(&mut asserter);
asserter.unwrap_count(want_len);
let mut asserter = InvariantAssertCount::new(InvariantAssertOrder::new(NopVisitor::default()));
b.in_order_traversal(&mut asserter);
asserter.unwrap_count(want_len);
}
// Invariant 2: values in the tree are stored in key order.
#[test]
fn prop_in_order_traversal_key_order(keys in proptest::collection::vec(any::<u64>(), 0..64)) {
let mut t = MerkleSearchTree::default();
let mut unique = HashSet::new();
let mut want_len = 0;
for key in keys {
if unique.insert(key) {
want_len += 1;
t.upsert(IntKey::new(key), &"bananas");
}
}
let mut asserter = InvariantAssertCount::new(InvariantAssertOrder::new(NopVisitor::default()));
t.in_order_traversal(&mut asserter);
asserter.unwrap_count(want_len);
}
// Invariant 3: two independent trees contain the same data iff their
// root hashes are identical.
//
// Additionally the serialised page ranges MUST match iff the trees
// match.
#[test]
fn prop_root_hash_data_equality(keys in proptest::collection::vec(any::<u64>(), 0..64)) {
let mut a = MerkleSearchTree::default();
let mut b = MerkleSearchTree::default();
// They are equal when empty.
assert_eq!(a.root_hash(), b.root_hash());
let mut unique = HashSet::new();
let last_entry = keys.first().cloned();
for key in keys {
if !unique.insert(key) {
// Root hashes may compute to the same value if the same
// (key, value) pair is inserted twice, causing the
// divergence assert below to spuriously trigger.
continue;
}
// Add the key to tree A
a.upsert(IntKey::new(key), &"bananas");
assert_eq!(a.root_hash_cached(), None);
// The trees have now diverged
assert_node_not_equal(&mut a, &mut b);
// Add the key to tree B
b.upsert(IntKey::new(key), &"bananas");
assert_eq!(b.root_hash_cached(), None);
// And now the tees have converged
assert_node_equal(&mut a, &mut b);
}
// Update a value for an existing key
if let Some(key) = last_entry {
b.upsert(IntKey::new(key), &"platanos");
assert_eq!(b.root_hash_cached(), None);
// The trees diverge
assert_node_not_equal(&mut a, &mut b);
// And converge once again
a.upsert(IntKey::new(key), &"platanos");
assert_eq!(a.root_hash_cached(), None);
// And now the tees have converged
assert_node_equal(&mut a, &mut b);
}
let mut asserter = InvariantAssertCount::new(InvariantAssertOrder::new(NopVisitor::default()));
a.in_order_traversal(&mut asserter);
asserter.unwrap_count(unique.len());
let mut asserter = InvariantAssertCount::new(InvariantAssertOrder::new(NopVisitor::default()));
b.in_order_traversal(&mut asserter);
asserter.unwrap_count(unique.len());
}
// Invariant: the node iter yields every node in the tree in ascending
// key order.
#[test]
fn prop_node_iter(keys in proptest::collection::vec(any::<u64>(), 0..64)) {
let mut t = MerkleSearchTree::default();
let mut inserted = BTreeSet::new();
for key in keys {
t.upsert(key, &key);
inserted.insert(key);
}
// Use the node iter to visit all nodes, preserving the key order in
// the returned iterator.
let got = t
.node_iter()
.map(|v| *v.key());
// The iterator must yield all keys in the same order as a (sorted!)
// BTreeSet to satisfy the invariant.
assert!(inserted.into_iter().eq(got));
}
}
fn assert_node_equal<K, V>(a: &mut MerkleSearchTree<K, V>, b: &mut MerkleSearchTree<K, V>)
where
K: AsRef<[u8]> + PartialOrd + Debug,
{
assert_eq!(a.root_hash(), b.root_hash(), "root hashes should be equal");
assert_eq!(
a.serialise_page_ranges(),
b.serialise_page_ranges(),
"serialised pages should match"
);
// The cached values must always match their computed values.
assert_eq!(
b.root_hash_cached().unwrap().clone(),
*b.root_hash(),
"cached hashes should be equal for b"
);
assert_eq!(
a.root_hash_cached().unwrap().clone(),
*a.root_hash(),
"cached hashes should be equal for a"
);
}
fn assert_node_not_equal<K, V>(a: &mut MerkleSearchTree<K, V>, b: &mut MerkleSearchTree<K, V>)
where
K: AsRef<[u8]> + PartialOrd + Debug,
{
assert_ne!(
a.root_hash(),
b.root_hash(),
"root hash should not be equal"
);
assert_ne!(
a.serialise_page_ranges(),
b.serialise_page_ranges(),
"serialised pages should not match"
);
// The cached values must always match their computed values.
assert_eq!(
b.root_hash_cached().unwrap().clone(),
*b.root_hash(),
"cached hashes should always be equal for b"
);
assert_eq!(
a.root_hash_cached().unwrap().clone(),
*a.root_hash(),
"cached hashes should always be equal for a"
);
}
}