1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
use std::{cmp::Ordering, hash::Hasher, ops::DerefMut};
use siphasher::sip128::{Hasher128, SipHasher24};
use crate::{
digest::{Digest, PageDigest, ValueDigest},
node::Node,
visitor::Visitor,
};
#[derive(Debug)]
pub(crate) enum UpsertResult<K> {
/// The key & value hash were successfully upserted.
Complete,
/// An intermediate page must be inserted between the caller and the callee.
InsertIntermediate(K),
}
/// A group of [`Node`] instances at the same location within the tree.
///
/// A page within an MST is a probabilistically sized structure, with varying
/// numbers of [`Node`] within. A page has a min/max key range defined by the
/// nodes within it, and the page hash acts as a content hash, describing the
/// state of the page and the nodes within it.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Page<const N: usize, K> {
level: u8,
/// The cached hash in this page; the cumulation of the hashes of the
/// sub-tree rooted at this page.
tree_hash: Option<PageDigest>,
/// A vector of nodes in this page, ordered min to max by key.
nodes: Vec<Node<N, K>>,
/// The page for keys greater-than all keys in nodes.
high_page: Option<Box<Page<N, K>>>,
}
impl<const N: usize, K> Page<N, K> {
pub(super) const fn new(level: u8, nodes: Vec<Node<N, K>>) -> Self {
Self {
level,
tree_hash: None,
nodes,
high_page: None,
}
}
/// Returns the the [`Node`] in this page.
pub fn nodes(&self) -> &[Node<N, K>] {
&self.nodes
}
/// Returns the tree level / deterministic / logical hight of this page in
/// the tree.
pub const fn level(&self) -> u8 {
self.level
}
/// Return the cached hash of this page if any, covering the nodes and the
/// sub-tree rooted at `self`.
pub fn hash(&self) -> Option<&PageDigest> {
self.tree_hash.as_ref()
}
/// Set the high page pointer for this page.
///
/// # Panics
///
/// Panics if this page already has a high page linked, or `p` contains no
/// nodes.
pub(crate) fn insert_high_page(&mut self, p: Box<Self>) {
debug_assert!(self.high_page.is_none());
debug_assert!(!p.nodes().is_empty());
// Invalidate the hash of this page.
self.tree_hash = None;
self.high_page = Some(p)
}
/// Return a pointer to the linked high page, if any.
pub(crate) fn high_page(&self) -> Option<&Self> {
self.high_page.as_deref()
}
/// Perform a depth-first, in-order traversal, yielding each [`Page`] and
/// [`Node`] to `visitor`.
///
/// If `high_page` is true, this page was linked to from the parent via a
/// high page pointer.
pub(crate) fn in_order_traversal<'a, T>(&'a self, visitor: &mut T, high_page: bool) -> bool
where
T: Visitor<'a, N, K>,
{
if !visitor.visit_page(self, high_page) {
return false;
}
for node in &self.nodes {
if !node.depth_first(visitor) {
return false;
}
}
if !visitor.post_visit_page(self) {
return false;
}
if let Some(h) = &self.high_page {
if !h.in_order_traversal(visitor, true) {
return false;
}
}
true
}
/// Return the minimum key stored in this page.
///
/// This is an `O(1)` operation.
///
/// # Panics
///
/// Panics if there are no nodes in this page.
#[inline]
pub(crate) fn min_key(&self) -> &K {
self.nodes.first().unwrap().key()
}
/// Return the maximum key stored in this page.
///
/// This is an `O(1)` operation.
///
/// # Panics
///
/// Panics if there are no nodes in this page.
#[inline]
pub(crate) fn max_key(&self) -> &K {
self.nodes.last().unwrap().key()
}
/// Descend down the minimum (left most) path (if any) and return the
/// minimum key in the subtree rooted at `p`.
///
/// This is an `O(logN)` operation.
#[inline]
pub(crate) fn min_subtree_key(&self) -> &K {
// This is mildly faster than the iterator chain approach.
let v = self.nodes().get(0).and_then(|v| v.lt_pointer());
if let Some(v) = v {
return v.min_subtree_key();
}
self.min_key()
}
/// Chase the high page pointers to the maximum page value of the subtree
/// rooted at `p`.
///
/// This is an `O(logN)` operation.
#[inline]
pub(crate) fn max_subtree_key(&self) -> &K {
self.high_page()
.map(|v| v.max_subtree_key())
.unwrap_or_else(|| self.max_key())
}
}
impl<const N: usize, K> Page<N, K>
where
K: AsRef<[u8]>,
{
/// Generate the page hash and cache the value, covering the nodes and the
/// sub-tree rooted at `self`.
pub(crate) fn maybe_generate_hash(&mut self, hasher: &SipHasher24) {
if self.tree_hash.is_some() {
return;
}
let mut h = *hasher;
// NOTE: changing the ordering of the hashed elements is a breaking
// change.
//
// This order may be changed only if releasing a new major version, as
// it invalidates existing hashes.
// Hash all nodes & their child pages
for n in &mut self.nodes {
// Hash the lt child page of this node, if any
if let Some(child_hash) = n.lt_pointer_mut().as_deref_mut().map(|v| {
v.maybe_generate_hash(hasher);
v.hash().unwrap()
}) {
h.write(child_hash.as_ref());
}
// Hash the node value itself
h.write(n.key().as_ref());
h.write(n.value_hash().as_ref());
}
// Hash the high page, if any
if let Some(high_hash) = self.high_page.as_deref_mut().map(|v| {
v.maybe_generate_hash(hasher);
v.hash().unwrap()
}) {
h.write(high_hash.as_ref());
}
self.tree_hash = Some(PageDigest::from(Digest::new(h.finish128().as_bytes())));
}
}
impl<const N: usize, K> Page<N, K>
where
K: PartialOrd,
{
/// Insert or update the value hash of `key`, setting it to `value`, found
/// at tree `level`.
///
/// Returns true if the key was found, or false otherwise.
///
/// If the key is found/modified, the cached page hash is invalidated.
pub(crate) fn upsert(&mut self, key: K, level: u8, value: ValueDigest<N>) -> UpsertResult<K> {
match level.cmp(&self.level) {
// Level is less than this page's level - descend down the tree.
Ordering::Less => {
// A non-zero page can never be empty, and level is less than
// this page, which means this page must be non-zero.
debug_assert_ne!(!self.level, 0);
debug_assert!(!self.nodes.is_empty());
// Find the node that is greater-than-or-equal-to key to descend
// into.
//
// Otherwise insert this node into the high page.
let ptr = self.nodes.partition_point(|v| key > *v.key());
let page = match self.nodes.get_mut(ptr) {
Some(v) => {
debug_assert!(*v.key() > key);
v.lt_pointer_mut()
}
None => &mut self.high_page,
};
let page = page.get_or_insert_with(|| Box::new(Self::new(level, vec![])));
if let UpsertResult::InsertIntermediate(key) =
page.upsert(key, level, value.clone())
{
insert_intermediate_page(page, key, level, value);
}
}
Ordering::Equal => self.upsert_node(key, value),
// Level is more than this page's level
Ordering::Greater => {
// This level is lower than the desired level, the parent is
// higher than the desired level.
//
// Returning false will case the parent will insert a new page.
return UpsertResult::InsertIntermediate(key); // No need to update the hash of this subtree
}
}
// This page, or one below it was modified. Invalidate the pre-computed
// page hash, if any.
//
// This marks the page as "dirty" causing the hash to be recomputed on
// demand, coalescing multiple updates instead of hashing for each.
self.tree_hash = None;
UpsertResult::Complete
}
/// Insert a node into this page, splitting any child pages as necessary.
pub(crate) fn upsert_node(&mut self, key: K, value: ValueDigest<N>) {
// Find the appropriate child pointer to follow.
let idx = self.nodes.partition_point(|v| key > *v.key());
// At this point the new key should be inserted has been identified -
// node_idx points to the first node greater-than-or-equal to key.
//
// In this example, we're inserting the key "C":
//
// node_idx
// ║
// ║
// ▼
// ┌──────────┬──────────┐
// │ LT Node │ GTE Node │
// │ A │ E │
// └──────────┴──────────┘
// │ │
// ┌──────┘ │
// ▼ ▼
// ┌─Page──────┐ ┌─Page──────┐
// │ │ │ ┌───┬───┐ │
// │ Always LT │ │ │ B │ D │ │
// │ new key │ │ └───┴───┘ │
// └───────────┘ └───────────┘
//
// The less-than node never needs splitting, because all the keys within
// it are strictly less than the insert key.
//
// The GTE child page does need splitting - all the keys less than "C"
// need moving into the new node's less-than page.
//
// If the new "C" node will be inserted at the end of the node array,
// there's no GTE node to check - instead the high page may contain
// relevant nodes that must be split.
let page_to_split = match self.nodes.get_mut(idx) {
Some(n) if *n.key() == key => {
n.update_value_hash(value);
return;
}
Some(n) => n.lt_pointer_mut(),
None => &mut self.high_page,
};
// Split the higher-page, either within a GTE node or the high page.
let mut new_lt_page = split_off_lt(page_to_split, &key).map(Box::new);
if let Some(lt_page) = &mut new_lt_page {
debug_assert!(self.level > lt_page.level);
debug_assert!(!lt_page.nodes.is_empty());
debug_assert!(*lt_page.max_key() < key);
let high_page_lt = split_off_lt(&mut lt_page.high_page, &key);
let gte_page = std::mem::replace(&mut lt_page.high_page, high_page_lt.map(Box::new));
if let Some(gte_page) = gte_page {
debug_assert!(self.level > gte_page.level);
debug_assert!(!gte_page.nodes.is_empty());
debug_assert!(*gte_page.max_key() > key);
self.insert_high_page(gte_page);
}
}
self.nodes.insert(idx, Node::new(key, value, new_lt_page));
}
}
/// Split `page`, mutating it such that it contains only nodes with keys ordered
/// strictly-less than `key`, returning a new [`Page`] containing the
/// greater-than-or-equal-to nodes.
///
/// If splitting `page` would leave it with no nodes, it is set to [`None`].
///
/// NOTE: this only splits the page provided - it is up to the caller to split
/// any high pages as necessary.
///
/// # Panics
///
/// This method panics if attempting to split a non-empty page (root pages are
/// never split).
fn split_off_lt<const N: usize, T, K>(page: &mut Option<T>, key: &K) -> Option<Page<N, K>>
where
K: PartialOrd,
T: DerefMut<Target = Page<N, K>>,
{
let page_ref = page.as_deref_mut()?;
debug_assert!(!page_ref.nodes.is_empty());
// A page should be split into two parts - one page containing the elements
// less-than "key", and one containing parts greater-or-equal to "key".
let partition_idx = page_ref.nodes.partition_point(|v| key > v.key());
// All the nodes are greater-than-or-equal-to "key" - there's no less-than
// nodes to return.
if partition_idx == 0 {
debug_assert!(page_ref.min_key() > key);
// The first gte node may have a lt_pointer with nodes that are lt key.
return match split_off_lt(page_ref.nodes[0].lt_pointer_mut(), key) {
Some(v) => {
// Invalidate the page hash as the lt_page was split or the keys
// moved, changing the content the hash covers.
page_ref.tree_hash = None;
Some(v)
}
None => None,
};
}
// All the nodes are less than key.
//
// As an optimisation, simply return the existing page as the new page
// (retaining the pre-computed hash if possible) and invalidate the old
// page.
if partition_idx == page_ref.nodes.len() {
debug_assert!(page_ref.max_key() < key);
// The page may have a high page, which may have nodes within the
// (max(nodes.key), key) range
let lt_high_nodes = split_off_lt(&mut page_ref.high_page, key);
// If existing the high page was split (both sides are non-empty) then
// invalidate the page hash.
//
// This effectively invalidates the page range of the returned lt_page
// as the cached hash covers the high page (which has now been split,
// changing the content).
if lt_high_nodes.is_some() && page_ref.high_page.is_some() {
page_ref.tree_hash = None;
}
// Put the lt nodes back into the high page, taking the gte nodes from
// the high page.
//
// This leaves the lt_high_nodes in the high page link of page_ref.
let gte_high_page = std::mem::replace(&mut page_ref.high_page, lt_high_nodes.map(Box::new));
// Initialise the page we're about to return.
//
// This puts an empty page into page_ref, taking the new lt nodes in
// page (potentially with the high page linked to lt_high_nodes)
let lt_page = Some(std::mem::replace(
page_ref,
Page::new(page_ref.level, vec![]),
));
// Put the gte nodes into the input page, if any (page should contain
// all gte nodes after this split).
match gte_high_page {
Some(p) => *page_ref = *p,
None => *page = None,
}
return lt_page;
}
// Invalidate the page hash as at least one node will be removed.
page_ref.tree_hash = None;
// Obtain the set of nodes that are greater-than-or-equal-to "key".
let gte_nodes: Vec<_> = page_ref.nodes.drain(partition_idx..).collect();
debug_assert!(!gte_nodes.is_empty());
// page_ref now contains the lt nodes, and a high page that may be non-empty
// and gte than key.
// Initialise a new page to hold the gte nodes.
let mut gte_page = Page::new(page_ref.level, gte_nodes);
debug_assert!(gte_page.max_key() > key);
// Move the input high page onto the new gte page (which continues to be gte
// than the nodes taken from the input page).
if let Some(h) = page_ref.high_page.take() {
debug_assert!(!h.nodes.is_empty());
debug_assert!(h.level < page_ref.level);
debug_assert!(h.min_key() > key);
gte_page.insert_high_page(h);
}
// The first gte node may contain a lt_pointer with keys lt key, recurse
// into it.
let lt_key_high_nodes = split_off_lt(gte_page.nodes.first_mut().unwrap().lt_pointer_mut(), key);
// In which case it is gte all node keys in the lt page (or it wouldn't have
// been on the gte node).
//
// Add this to the new lt_page's high page next.
// Replace the input page with the gte nodes, taking the page containing the
// lt nodes and returning them to the caller.
let mut lt_page = std::mem::replace(page_ref, gte_page);
debug_assert!(!lt_page.nodes.is_empty());
debug_assert!(lt_page.max_key() < key);
// Insert the high page, if any.
if let Some(h) = lt_key_high_nodes {
debug_assert!(h.level < page_ref.level);
debug_assert!(h.max_key() < key);
debug_assert!(!h.nodes.is_empty());
lt_page.insert_high_page(Box::new(h));
}
Some(lt_page)
}
pub(crate) fn insert_intermediate_page<const N: usize, T, K>(
child_page: &mut T,
key: K,
level: u8,
value: ValueDigest<N>,
) where
K: PartialOrd,
T: DerefMut<Target = Page<N, K>>,
{
// Terminology:
//
// * parent_page: top of the stack, parent of child_page
// * intermediate/new page: intermediate page with level between parent_page
// and child_page to be inserted between them.
// * child_page: the lower page, child of parent_page
//
// The child page asked this page to insert a new intermediate page at this
// location.
//
// ┌──────────┐
// │ New Root │
// ┌────│ B │─────┐ Level N
// │ └──────────┘ │
// lt_pointer high_page
// │ │
// │ │
// ┌ ─ ─ ─ ─│─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─│─ ─ ─ ─ ─ ─ ─ ─ ─ ┐
// ┌─────▼────┐ ┌─────▼────┐
// │ │ LT Node │ │ GTE Node │ Child Page │
// │ A │ │ C │ Level 0
// │ └──────────┘ └──────────┘ │
// ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
//
// The child page must be split into nodes less-than key, and those
// greater-than-or-equal to key to preserve the ordering once this new page
// containing key is inserted. Both halves must be linked into the new page.
debug_assert!(child_page.level() < level);
debug_assert!(!child_page.nodes.is_empty());
// Split the child page into (less-than, greater-than) pages, split at the
// point where key would reside.
//
// NOTE: this may leave "page" empty if all the nodes moved to the lt page.
let mut lt_page = {
let child_page2 = child_page.deref_mut();
let mut child_page_ref = Some(&mut *child_page2);
split_off_lt(&mut child_page_ref, &key)
};
// If all the nodes moved out of the child_page and into lt_page it
// indicates that all nodes had keys less-than the new key, meaning there
// may be nodes in the lt_page high page that need splitting, as it may
// contain values between max(lt_page.nodes) and key.
//
// For example, when inserting 4:
//
// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─
// ┌───┐ New Parent │
// ┌──│ │ 4 │ Level 2
// │ └───┘ │
// │ └ ─ ─ ─ ─ ─ ─ ─ ─ ─
// │
// ┌ ─ ─ ─ ─ ─│─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
// ┌───┬───▼───────┐ Child Page │
// │ │ 1 │ 2 │ high │ Level 1
// └───┴───┴───────┘ │
// └ ─ ─ ─ ─ ─ ─ ─│─ ─ ─ ─ ─ ─ ─ ─ ─
// │
// ┌ ─ ▼ ─ ─ ─ ─ ─ ─ ─ ─ ┐
// ┌───┬───┐
// │ │ 3 │ 5 │ Level 0 │
// └───┴───┘
// └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘
//
// The existing entry of 5 must be moved, as it is greater than the new
// parent:
//
// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
// New Parent │
// │ ┌───┬───────┐ Level 2
// ┌───│ 4 │ high │───┐ │
// │ │ └───┴───────┘ │
// │ ─ ─ ─ ─ ─ ─ ─ ─ ─│─ ─ ─ ┘
// ▼ │
// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
// ┌───┬───┬───────┐ Child Page │ │
// │ │ 1 │ 2 │ high │ Level 1 │
// └───┴───┴───────┘ │ │
// └ ─ ─ ─ ─ ─ ─ ─│─ ─ ─ ─ ─ ─ ─ ─ ─ │
// ▼ ▼
// ┌ ─ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─ ─
// ┌───┐ │ ┌───┐ │
// ││ 3 │ Level 0 ││ 5 │ Level 0
// └───┘ │ └───┘ │
// └ ─ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─ ─
//
// To do this, we split the high page, attaching the lt_nodes to the lt_page
// created above, and attach the remaining gte_nodes to the high_page of the
// intermediate_page.
let mut gte_page = None;
if let Some(lt_page) = &mut lt_page {
debug_assert!(level > lt_page.level);
debug_assert!(!lt_page.nodes.is_empty());
debug_assert!(*lt_page.max_key() < key);
let high_page_lt = split_off_lt(&mut lt_page.high_page, &key);
gte_page = std::mem::replace(&mut lt_page.high_page, high_page_lt.map(Box::new));
if let Some(gte_page) = >e_page {
debug_assert!(level > gte_page.level);
debug_assert!(!gte_page.nodes.is_empty());
debug_assert!(*gte_page.max_key() > key);
}
}
// Create the new node.
let node = Node::new(key, value, None);
// Create the new intermediate page, between the parent page and the child
// page.
let mut intermediate_page = Page::new(level, vec![node]);
if let Some(gte_page) = gte_page {
intermediate_page.insert_high_page(gte_page);
}
// Replace the page pointer at this level to point to the new page, taking
// the page that now contains the lt nodes after the split.
let gte_page = std::mem::replace(child_page.deref_mut(), intermediate_page);
// At this point, we have this structure:
//
// ┌─────────────┐
// │ This Page │
// └─────────────┘
// │
// ▼
// ┌───────────────────┐
// │ Intermediate Page │
// └───────────────────┘
//
// The lt_page and gtw_pages need linking into the new node within the new
// intermediate page.
*child_page.nodes[0].lt_pointer_mut() = lt_page.map(Box::new);
if !gte_page.nodes.is_empty() {
debug_assert!(gte_page.max_key() > child_page.nodes[0].key()); // "key"
debug_assert!(level > gte_page.level);
child_page.high_page = Some(Box::new(gte_page));
}
}
#[cfg(test)]
mod tests {
use assert_matches::assert_matches;
use super::*;
use crate::{assert_tree, digest::Digest};
const MOCK_VALUE: ValueDigest<1> = ValueDigest::new(Digest::new([0; 1]));
const MOCK_PAGE_HASH: PageDigest = PageDigest::new([0; 16]);
#[test]
#[should_panic(expected = "!page_ref.nodes.is_empty()")]
fn test_split_page_empty() {
let mut gte_page = Some(Box::new(Page::<1, _>::new(42, vec![])));
let _lt_page = split_off_lt(&mut gte_page, &5);
}
#[test]
fn test_split_page_single_node_lt() {
let mut gte_page = Some(Box::new(Page::new(
42,
vec![Node::new(2, MOCK_VALUE, None)],
)));
gte_page.as_mut().unwrap().tree_hash = Some(MOCK_PAGE_HASH);
let lt_page = split_off_lt(&mut gte_page, &5);
assert_matches!(gte_page, None);
assert_matches!(lt_page, Some(p) => {
assert_eq!(p.level, 42);
// The unmodified page has the hash retained.
assert_eq!(p.tree_hash, Some(MOCK_PAGE_HASH));
assert_eq!(p.nodes, [
Node::new(2, MOCK_VALUE, None),
]);
});
}
#[test]
fn test_split_page_single_node_gt() {
let mut gte_page = Some(Box::new(Page::new(
42,
vec![Node::new(2, MOCK_VALUE, None)],
)));
gte_page.as_mut().unwrap().tree_hash = Some(MOCK_PAGE_HASH);
let lt_page = split_off_lt(&mut gte_page, &1);
assert_matches!(gte_page, Some(p) => {
assert_eq!(p.level, 42);
// The unmodified page has the hash retained.
assert_eq!(p.tree_hash, Some(MOCK_PAGE_HASH));
assert_eq!(p.nodes, [
Node::new(2, MOCK_VALUE, None),
]);
});
assert_matches!(lt_page, None);
}
/// Test that a page containing entirely gte nodes, but with a linked high
/// page that requires splitting, has the page has invalidated.
#[test]
fn test_split_page_single_node_gt_with_high_page_split() {
let mut high_page = Box::new(Page::new(
40,
vec![
Node::new(10, MOCK_VALUE, None),
Node::new(15, MOCK_VALUE, None),
],
));
high_page.tree_hash = Some(MOCK_PAGE_HASH);
let mut page = Box::new(Page::new(42, vec![Node::new(5, MOCK_VALUE, None)]));
page.tree_hash = Some(MOCK_PAGE_HASH);
page.insert_high_page(high_page);
let mut page = Some(page);
let lt_page = split_off_lt(&mut page, &12);
assert_matches!(page, Some(p) => {
assert_eq!(p.level, 40);
// The modified page has the hash invalidated as the high page was
// split.
assert_eq!(p.tree_hash, None);
assert_eq!(p.nodes, [
Node::new(15, MOCK_VALUE, None),
]);
assert_eq!(p.high_page, None);
});
assert_matches!(lt_page, Some(p) => {
assert_eq!(p.level, 42);
assert_eq!(p.tree_hash, None);
assert_eq!(p.nodes, [
Node::new(5, MOCK_VALUE, None),
]);
assert_eq!(p.high_page.as_ref().unwrap().nodes, [
Node::new(10, MOCK_VALUE, None),
]);
assert_eq!(p.high_page.as_ref().unwrap().tree_hash, None);
});
}
/// Test that a page containing entirely lt nodes, but with a recursively
/// followed child page that requires splitting, has the page has
/// invalidated.
///
/// Toe ensure page hashes are recursively invalidated, the split child page
/// is actually two steps away from the target page.
#[test]
fn test_split_page_single_node_gt_with_child_page_split() {
// The bottom-most/deepest child page that requires splitting.
let child_2 = Some(Box::new(Page::new(
40,
vec![
Node::new(1, MOCK_VALUE, None),
// Split at 2
Node::new(3, MOCK_VALUE, None),
],
)));
// The parent of child_2
let child_1 = Some(Box::new(Page::new(
41,
vec![Node::new(4, MOCK_VALUE, child_2)],
)));
// The parent of child_1
let mut page = Some(Box::new(Page::new(
42,
vec![Node::new(5, MOCK_VALUE, child_1)],
)));
page.as_mut().unwrap().tree_hash = Some(MOCK_PAGE_HASH);
let lt_page = split_off_lt(&mut page, &2);
assert_matches!(page, Some(p) => {
assert_eq!(p.level, 42);
// The modified page has the hash invalidated as the child page was
// split.
assert_eq!(p.tree_hash, None);
assert_eq!(p.nodes, [
Node::new(5, MOCK_VALUE, Some(Box::new(Page::new(
41,
vec![Node::new(4, MOCK_VALUE, Some(Box::new(Page::new(
40,
// 1 split away
vec![Node::new(3, MOCK_VALUE, None)],
))))],
)))),
]);
});
assert_matches!(lt_page, Some(p) => {
assert_eq!(p.level, 40);
assert_eq!(p.nodes, [
Node::new(1, MOCK_VALUE, None),
]);
assert_eq!(p.tree_hash, None);
});
}
#[test]
fn test_split_page_eq() {
let mut gte_page = Some(Box::new(Page::new(
42,
vec![
Node::new(1, MOCK_VALUE, None),
Node::new(2, MOCK_VALUE, None),
Node::new(4, MOCK_VALUE, None),
],
)));
gte_page.as_mut().unwrap().tree_hash = Some(MOCK_PAGE_HASH);
let lt_page = split_off_lt(&mut gte_page, &2);
assert_matches!(gte_page, Some(p) => {
assert_eq!(p.level, 42);
assert_eq!(p.tree_hash, None);
assert_eq!(p.nodes, [
Node::new(2, MOCK_VALUE, None),
Node::new(4, MOCK_VALUE, None)
]);
});
assert_matches!(lt_page, Some(p) => {
assert_eq!(p.level, 42);
// The modified page has the hash invalidated.
assert_eq!(p.tree_hash, None);
assert_eq!(p.nodes, [
Node::new(1, MOCK_VALUE, None),
]);
});
}
#[test]
fn test_split_page_lt() {
let mut gte_page = Some(Box::new(Page::new(
42,
vec![
Node::new(1, MOCK_VALUE, None),
Node::new(2, MOCK_VALUE, None),
Node::new(4, MOCK_VALUE, None),
],
)));
gte_page.as_mut().unwrap().tree_hash = Some(MOCK_PAGE_HASH);
let lt_page = split_off_lt(&mut gte_page, &3);
assert_matches!(gte_page, Some(p) => {
assert_eq!(p.level, 42);
assert_eq!(p.tree_hash, None);
assert_eq!(p.nodes, [
Node::new(4, MOCK_VALUE, None)
]);
});
assert_matches!(lt_page, Some(p) => {
assert_eq!(p.level, 42);
// The modified page has the hash invalidated.
assert_eq!(p.tree_hash, None);
assert_eq!(p.nodes, [
Node::new(1, MOCK_VALUE, None),
Node::new(2, MOCK_VALUE, None),
]);
});
}
#[test]
fn test_split_page_all_gt() {
let mut gte_page = Some(Box::new(Page::new(
42,
vec![
Node::new(1, MOCK_VALUE, None),
Node::new(2, MOCK_VALUE, None),
Node::new(4, MOCK_VALUE, None),
],
)));
gte_page.as_mut().unwrap().tree_hash = Some(MOCK_PAGE_HASH);
let lt_page = split_off_lt(&mut gte_page, &0);
assert_matches!(gte_page, Some(p) => {
assert_eq!(p.level, 42);
// The new page containing all the nodes retains the pre-computed
// hash.
assert_eq!(p.tree_hash, Some(MOCK_PAGE_HASH));
assert_eq!(p.nodes, [
Node::new(1, MOCK_VALUE, None),
Node::new(2, MOCK_VALUE, None),
Node::new(4, MOCK_VALUE, None),
]);
});
assert_matches!(lt_page, None);
}
#[test]
fn test_split_page_all_lt() {
let mut gte_page = Some(Box::new(Page::new(
42,
vec![
Node::new(1, MOCK_VALUE, None),
Node::new(2, MOCK_VALUE, None),
Node::new(4, MOCK_VALUE, None),
],
)));
gte_page.as_mut().unwrap().tree_hash = Some(MOCK_PAGE_HASH);
let lt_page = split_off_lt(&mut gte_page, &10);
assert_matches!(gte_page, None);
assert_matches!(lt_page, Some(p) => {
assert_eq!(p.level, 42);
// The unmodified page retains the pre-computed hash.
assert_eq!(p.tree_hash, Some(MOCK_PAGE_HASH));
assert_eq!(p.nodes, [
Node::new(1, MOCK_VALUE, None),
Node::new(2, MOCK_VALUE, None),
Node::new(4, MOCK_VALUE, None),
]);
});
}
#[test]
fn test_upsert_less_than_split_child() {
let mut p = Page::new(1, vec![Node::new(4, MOCK_VALUE, None)]);
p.upsert(3, 0, MOCK_VALUE);
p.upsert(1, 0, MOCK_VALUE);
p.upsert(2, 1, MOCK_VALUE);
assert_tree!(page = p);
}
#[test]
fn test_split_page_recursive_lt_pointer() {
let mut lt_pointer_page = Page::new(52, vec![Node::new(86, MOCK_VALUE, None)]);
lt_pointer_page.tree_hash = Some(MOCK_PAGE_HASH);
let mut root = Box::new(Page::new(
42,
vec![Node::new(161, MOCK_VALUE, Some(Box::new(lt_pointer_page)))],
));
root.tree_hash = Some(MOCK_PAGE_HASH);
let key = 160;
let mut root = Some(root);
let lt_page = split_off_lt(&mut root, &key);
assert_matches!(lt_page, Some(p) => {
assert_eq!(p.level, 52);
assert_matches!(p.nodes(), [n] if *n.key() == 86)
});
}
#[test]
fn test_split_page_recursive_high_page() {
let mut high_page = Page::new(32, vec![Node::new(44, MOCK_VALUE, None)]);
high_page.tree_hash = Some(MOCK_PAGE_HASH);
let mut root = Box::new(Page::new(42, vec![Node::new(42, MOCK_VALUE, None)]));
root.tree_hash = Some(MOCK_PAGE_HASH);
root.insert_high_page(Box::new(high_page));
let key = 43;
let mut root = Some(root);
let lt_page = split_off_lt(&mut root, &key);
assert_matches!(lt_page, Some(p) => {
assert_eq!(p.level, 42);
assert_matches!(p.nodes(), [n] if *n.key() == 42)
});
assert_matches!(root, Some(p) => {
assert_eq!(p.level, 32);
assert_matches!(p.nodes(), [n] if *n.key() == 44)
});
}
}