1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// SPDX-FileCopyrightText: 2020 Robin Krahl <robin.krahl@ireas.org>
// SPDX-License-Identifier: Apache-2.0 or MIT

//! Provides [`Merge`][], a trait for objects that can be merged.
//!
//! # Usage
//!
//! ```
//! trait Merge {
//!     fn merge(&mut self, other: Self);
//! }
//! ```
//!
//! The [`Merge`][] trait can be used to merge two objects of the same type into one.  The intended
//! use case is merging configuration from different sources, for example environment variables,
//! multiple configuration files and command-line arguments, see the [`args.rs`][] example.
//!
//! This crate does not provide any `Merge` implementations, but `Merge` can be derived for
//! structs.  When deriving the `Merge` trait for a struct, you can provide custom merge strategies
//! for the fields that don’t implement `Merge`.  A merge strategy is a function with the signature
//! `fn merge<T>(left: &mut T, right: T)` that merges `right` into `left`.  The submodules of this
//! crate provide strategies for the most common types, but you can also define your own
//! strategies.
//!
//! ## Features
//!
//! This crate has the following features:
//!
//! - `derive` (default):  Enables the derive macro for the `Merge` trait using the `merge_derive`
//!   crate.
//! - `num` (default): Enables the merge strategies in the `num` module that require the
//!   `num_traits` crate.
//! - `std` (default): Enables the merge strategies in the `hashmap` and `vec` modules that require
//!    the standard library.  If this feature is not set, `merge` is a `no_std` library.
//!
//! # Example
//!
//! ```
//! use merge::Merge;
//!
//! #[derive(Merge)]
//! struct User {
//!     // Fields with the skip attribute are skipped by Merge
//!     #[merge(skip)]
//!     pub name: &'static str,
//!
//!     // The strategy attribute is used to customize the merge behavior
//!     #[merge(strategy = merge::option::overwrite_none)]
//!     pub location: Option<&'static str>,
//!
//!     #[merge(strategy = merge::vec::append)]
//!     pub groups: Vec<&'static str>,
//! }
//!
//! let defaults = User {
//!     name: "",
//!     location: Some("Internet"),
//!     groups: vec!["rust"],
//! };
//! let mut ferris = User {
//!     name: "Ferris",
//!     location: None,
//!     groups: vec!["mascot"],
//! };
//! ferris.merge(defaults);
//!
//! assert_eq!("Ferris", ferris.name);
//! assert_eq!(Some("Internet"), ferris.location);
//! assert_eq!(vec!["mascot", "rust"], ferris.groups);
//! ```
//!
//! [`Merge`]: trait.Merge.html
//! [`args.rs`]: https://git.sr.ht/~ireas/merge-rs/tree/master/examples/args.rs

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "derive")]
pub use merge_derive::*;

/// A trait for objects that can be merged.
///
/// # Deriving
///
/// `Merge` can be derived for structs if the `derive` feature is enabled.  The generated
/// implementation calls the `merge` method for all fields, or the merge strategy function if set.
/// You can use these field attributes to configure the generated implementation:
/// - `skip`: Skip this field in the `merge` method.
/// - `strategy = f`: Call `f(self.field, other.field)` instead of calling the `merge` function for
///    this field.
///
/// You can also set a default strategy for all fields by setting the `strategy` attribute for the
/// struct.
///
/// # Examples
///
/// Deriving `Merge` for a struct:
///
/// ```
/// use merge::Merge;
///
/// #[derive(Debug, PartialEq, Merge)]
/// struct S {
///     #[merge(strategy = merge::option::overwrite_none)]
///     option: Option<usize>,
///
///     #[merge(skip)]
///     s: String,
///
///     #[merge(strategy = merge::bool::overwrite_false)]
///     flag: bool,
/// }
///
/// let mut val = S {
///     option: None,
///     s: "some ignored value".to_owned(),
///     flag: false,
/// };
/// val.merge(S {
///     option: Some(42),
///     s: "some other ignored value".to_owned(),
///     flag: true,
/// });
/// assert_eq!(S {
///     option: Some(42),
///     s: "some ignored value".to_owned(),
///     flag: true,
/// }, val);
/// ```
///
/// Setting a default merge strategy:
///
/// ```
/// use merge::Merge;
///
/// #[derive(Debug, PartialEq, Merge)]
/// #[merge(strategy = merge::option::overwrite_none)]
/// struct S {
///     option1: Option<usize>,
///     option2: Option<usize>,
///     option3: Option<usize>,
/// }
///
/// let mut val = S {
///     option1: None,
///     option2: Some(1),
///     option3: None,
/// };
/// val.merge(S {
///     option1: Some(2),
///     option2: Some(2),
///     option3: None,
/// });
/// assert_eq!(S {
///     option1: Some(2),
///     option2: Some(1),
///     option3: None,
/// }, val);
/// ```
pub trait Merge {
    /// Merge another object into this object.
    fn merge(&mut self, other: Self);
}

/// Merge strategies for `Option`
pub mod option {
    /// Overwrite `left` with `right` only if `left` is `None`.
    pub fn overwrite_none<T>(left: &mut Option<T>, right: Option<T>) {
        if left.is_none() {
            *left = right;
        }
    }

    /// If both `left` and `right` are `Some`, recursively merge the two.
    /// Otherwise, fall back to `overwrite_none`.
    pub fn recurse<T: crate::Merge>(left: &mut Option<T>, right: Option<T>) {
        if let Some(new) = right {
            if let Some(original) = left {
                original.merge(new);
            } else {
                *left = Some(new);
            }
        }
    }
}

/// Merge strategies for boolean types.
pub mod bool {
    /// Overwrite left with right if the value of left is false.
    pub fn overwrite_false(left: &mut bool, right: bool) {
        if !*left {
            *left = right;
        }
    }

    /// Overwrite left with right if the value of left is true.
    pub fn overwrite_true(left: &mut bool, right: bool) {
        if *left {
            *left = right;
        }
    }
}

/// Merge strategies for numeric types.
///
/// These strategies are only available if the `num` feature is enabled.
#[cfg(feature = "num")]
pub mod num {
    /// Set left to the saturated some of left and right.
    pub fn saturating_add<T: num_traits::SaturatingAdd>(left: &mut T, right: T) {
        *left = left.saturating_add(&right);
    }

    /// Overwrite left with right if the value of left is zero.
    pub fn overwrite_zero<T: num_traits::Zero>(left: &mut T, right: T) {
        if left.is_zero() {
            *left = right;
        }
    }
}

/// Merge strategies for types that form a total order.
pub mod ord {
    use core::cmp;

    /// Set left to the maximum of left and right.
    pub fn max<T: cmp::Ord>(left: &mut T, right: T) {
        if cmp::Ord::cmp(left, &right) == cmp::Ordering::Less {
            *left = right;
        }
    }

    /// Set left to the minimum of left and right.
    pub fn min<T: cmp::Ord>(left: &mut T, right: T) {
        if cmp::Ord::cmp(left, &right) == cmp::Ordering::Greater {
            *left = right;
        }
    }
}

/// Merge strategies for vectors.
///
/// These strategies are only available if the `std` feature is enabled.
#[cfg(feature = "std")]
pub mod vec {
    /// Overwrite left with right if left is empty.
    pub fn overwrite_empty<T>(left: &mut Vec<T>, mut right: Vec<T>) {
        if left.is_empty() {
            left.append(&mut right);
        }
    }

    /// Append the contents of right to left.
    pub fn append<T>(left: &mut Vec<T>, mut right: Vec<T>) {
        left.append(&mut right);
    }

    /// Prepend the contents of right to left.
    pub fn prepend<T>(left: &mut Vec<T>, mut right: Vec<T>) {
        right.append(left);
        *left = right;
    }
}

/// Merge strategies for hash maps.
///
/// These strategies are only available if the `std` feature is enabled.
#[cfg(feature = "std")]
pub mod hashmap {
    use std::collections::HashMap;
    use std::hash::Hash;

    /// On conflict, overwrite elements of `left` with `right`.
    ///
    /// In other words, this gives precedence to `right`.
    pub fn overwrite<K: Eq + Hash, V>(left: &mut HashMap<K, V>, right: HashMap<K, V>) {
        left.extend(right.into_iter())
    }

    /// On conflict, ignore elements from `right`.
    ///
    /// In other words, this gives precedence to `left`.
    pub fn ignore<K: Eq + Hash, V>(left: &mut HashMap<K, V>, right: HashMap<K, V>) {
        for (k, v) in right {
            left.entry(k).or_insert(v);
        }
    }

    /// On conflict, recursively merge the elements.
    pub fn recurse<K: Eq + Hash, V: crate::Merge>(left: &mut HashMap<K, V>, right: HashMap<K, V>) {
        use std::collections::hash_map::Entry;

        for (k, v) in right {
            match left.entry(k) {
                Entry::Occupied(mut existing) => existing.get_mut().merge(v),
                Entry::Vacant(empty) => {
                    empty.insert(v);
                }
            }
        }
    }

    /// Merge recursively elements if the key is present in `left` and `right`.
    pub fn intersection<K: Eq + Hash, V: crate::Merge>(
        left: &mut HashMap<K, V>,
        right: HashMap<K, V>,
    ) {
        use std::collections::hash_map::Entry;

        for (k, v) in right {
            match left.entry(k) {
                Entry::Occupied(mut existing) => existing.get_mut().merge(v),
                _ => {}
            }
        }
    }
}