merde_core/
metastack.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//! The "metastack" technique allows running deeply recursive code without blowing up the stack.
//! It's an alternative to the [stacker](https://crates.io/crates/stacker) crate that uses Rust's
//! async machinery.
//!
//! metastack involves making functions into async functions: this turns them into state machines.
//! As a result, just before we're about to the overflow the stack, we put the rest of the work in
//! a "next future" thread-local, and returns `Poll::Pending`.
//!
//! This unwinds the stack all the way to the metastack landing pad, which then polls the "next future"
//! from an empty stack. That future is in turn free to schedule another "next future", and so on.
use std::{
    cell::RefCell,
    future::Future,
    pin::Pin,
    sync::LazyLock,
    task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
};

use pin_project_lite::pin_project;

type NextFuture = Pin<Box<dyn Future<Output = ()>>>;

// TODO: make this configurable? make this depend on the
// future size? 8K is not one-size-fits-all
const MINIMUM_VIABLE_FREE_STACK_SPACE: u64 = 8 * 1024;

const DUMMY_VTABLE: RawWakerVTable = RawWakerVTable::new(|_| todo!(), |_| {}, |_| {}, |_| {});
const DUMMY_WAKER: &Waker =
    unsafe { &Waker::from_raw(RawWaker::new(std::ptr::null(), &DUMMY_VTABLE)) };

std::thread_local! {
    pub static NEXT_FUTURE: RefCell<Option<NextFuture>> = const { RefCell::new(None) };
    pub static STACK_INFO: LazyLock<StackInfo> = LazyLock::new(StackInfo::get);
}

pub trait MetastackExt<'s>: Sized {
    type Output;

    /// Transforms a future into a future that will return `Poll::Pending` if there
    /// is not enough stack space to execute the future.
    fn with_metastack_resume_point(self) -> Pin<Box<dyn Future<Output = Self::Output> + 's>>;

    /// Sets up a landing pad to catch `Poll::Pending` returns and run the next
    /// scheduled future on a slightly emptier stack.
    fn run_sync_with_metastack(self) -> Self::Output;

    /// Sets up a landing pad to catch `Poll::Pending` returns and run the next
    /// scheduled future on a slightly emptier stack — but also supports yielding
    /// to the async runtime.
    fn run_async_with_metastack(self) -> impl Future<Output = Self::Output>;
}

impl<'s, F> MetastackExt<'s> for F
where
    F: Future + 's,
{
    type Output = F::Output;

    fn with_metastack_resume_point(self) -> Pin<Box<dyn Future<Output = Self::Output> + 's>> {
        with_metastack_resume_point(self)
    }

    fn run_sync_with_metastack(self) -> Self::Output {
        let mut cx = Context::from_waker(DUMMY_WAKER);
        let mut first_fut = std::pin::pin!(self);

        match first_fut.as_mut().poll(&mut cx) {
            Poll::Ready(res) => res,
            _ => {
                // oh boy. okay.
                let mut metastack = vec![];

                'crimes: loop {
                    let mut fut = NEXT_FUTURE
                        .with_borrow_mut(|next_fut| next_fut.take())
                        .expect("NEXT_FUTURE must've been set before returning Poll::Pending");
                    match Pin::new(&mut fut).poll(&mut cx) {
                        Poll::Ready(_) => break 'crimes,
                        Poll::Pending => {
                            metastack.push(fut);
                        }
                    }
                }

                while let Some(mut fut) = metastack.pop() {
                    match Pin::new(&mut fut).poll(&mut cx) {
                        Poll::Ready(_) => {
                            // cool let's keep going
                        }
                        Poll::Pending => {
                            unreachable!("I'm sorry you really only get to ask for more stack once")
                        }
                    }
                }

                match first_fut.poll(&mut cx) {
                    Poll::Ready(res) => res,
                    Poll::Pending => {
                        unreachable!("Like I said, you really only get to ask for more stack once")
                    }
                }
            }
        }
    }

    fn run_async_with_metastack(self) -> impl Future<Output = Self::Output> {
        MetastackFutureAdapter {
            future: self,
            // perf note: empty vecs don't allocate yet, so `Option<Vec<T>>` is pointless
            recursions: Default::default(),
        }
    }
}

pin_project! {
    struct MetastackFutureAdapter<F: Future> {
        #[pin]
        future: F,
        recursions: Vec<NextFuture>,
    }
}

impl<F> Future for MetastackFutureAdapter<F>
where
    F: Future,
{
    type Output = F::Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let mut this = self.project();

        // goto considered harmful? just use a loop 😎
        loop {
            if let Some(mut fut) = this.recursions.pop() {
                match fut.as_mut().poll(cx) {
                    Poll::Ready(_) => {
                        // cool, let's keep unwinding the metastack
                        continue;
                    }
                    Poll::Pending => {
                        // are we suspending for I/O, or did we almost run out of stack space?
                        match NEXT_FUTURE.with_borrow_mut(|next_future| next_future.take()) {
                            Some(next_fut) => {
                                // needs more stack space, alrighty then.
                                this.recursions.push(fut);
                                this.recursions.push(next_fut);
                                continue;
                            }
                            None => {
                                // just
                            }
                        }
                    }
                }
            }

            // ran out of recursions (or it's the first poll), let's poll the first future
            match this.future.as_mut().poll(cx) {
                Poll::Ready(res) => {
                    // wow we did it!
                    return Poll::Ready(res);
                }
                Poll::Pending => {
                    // are we suspending for I/O, or did we almost run out of stack space?
                    match NEXT_FUTURE.with_borrow_mut(|next_future| next_future.take()) {
                        Some(next_fut) => {
                            // needs more stack space, alrighty then.
                            this.recursions.push(next_fut);
                            continue;
                        }
                        None => {
                            // just
                        }
                    }
                }
            }
        }
    }
}

/// Transforms a future into a future that will return `Poll::Pending` if there
/// is not enough stack space to execute the future.
///
/// This relies on the current async stack being invoked via `run_with_infinite_stack`
pub fn with_metastack_resume_point<'s, F>(fut: F) -> Pin<Box<dyn Future<Output = F::Output> + 's>>
where
    F: Future + 's,
{
    Box::pin(async move {
        if STACK_INFO.with(|si| si.left()) >= MINIMUM_VIABLE_FREE_STACK_SPACE {
            // no need for any special handling
            return fut.await;
        }

        // this looks like it's on the stack, but it's not! because we're
        // in a boxed future — we'll be pinned somewhere in memory before
        // we get a chance to take a reference to it.
        let mut result: Option<F::Output> = None;

        // make a future that will actually assign the result
        let assign_fut: Pin<Box<dyn Future<Output = ()>>> = Box::pin(async {
            result = Some(fut.await);
        });

        // # Safety: this isn't actually 'static, it's "valid for the synchronous
        // call to deserialize".
        // todo: make sure that this is actually the case by handling panics and
        // clearing thread-locals.
        let assign_fut: Pin<Box<dyn Future<Output = ()> + 'static>> =
            unsafe { std::mem::transmute(assign_fut) };

        NEXT_FUTURE.with_borrow_mut(|next_future| *next_future = Some(assign_fut));
        ReturnPendingOnce::new().await;
        result.unwrap()
    })
}

/// A future that returns `Poll::Pending` once, and then `Poll::Ready`
struct ReturnPendingOnce {
    polled: bool,
}

impl ReturnPendingOnce {
    fn new() -> Self {
        Self { polled: false }
    }
}

impl Future for ReturnPendingOnce {
    type Output = ();

    fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.get_mut();

        if this.polled {
            Poll::Ready(())
        } else {
            this.polled = true;
            Poll::Pending
        }
    }
}

/// Stack information — we always assume the stack grows down (e.g. the more we
/// allocate, the "lower" the address).
pub struct StackInfo {
    /// The highest possible address of the stack
    highest_address: u64,

    /// The size of the stack
    size: u64,
}

impl StackInfo {
    pub fn get() -> Self {
        #[cfg(target_os = "macos")]
        unsafe {
            use std::os::raw::c_void;

            extern "C" {
                fn pthread_get_stackaddr_np(thread: u64) -> *mut c_void;
                fn pthread_get_stacksize_np(thread: u64) -> usize;
                fn pthread_self() -> u64;
            }

            let thread = pthread_self();
            let stack_addr = pthread_get_stackaddr_np(thread) as u64;
            let size = pthread_get_stacksize_np(thread) as u64;

            Self {
                highest_address: stack_addr,
                size,
            }
        }

        #[cfg(target_os = "linux")]
        {
            unsafe {
                use std::mem;
                use std::os::raw::c_void;

                extern "C" {
                    fn pthread_attr_init(attr: *mut pthread_attr_t) -> i32;
                    fn pthread_attr_destroy(attr: *mut pthread_attr_t) -> i32;
                    fn pthread_getattr_np(thread: pthread_t, attr: *mut pthread_attr_t) -> i32;
                    fn pthread_attr_getstack(
                        attr: *const pthread_attr_t,
                        stackaddr: *mut *mut c_void,
                        stacksize: *mut usize,
                    ) -> i32;
                    fn pthread_self() -> pthread_t;
                }

                #[repr(C)]
                #[allow(non_camel_case_types)]
                struct pthread_attr_t {
                    __size: [u64; 7],
                }

                #[allow(non_camel_case_types)]
                type pthread_t = usize;

                let mut attr: pthread_attr_t = mem::zeroed();
                let mut lowest_address: *mut c_void = std::ptr::null_mut();
                let mut size: usize = 0;

                pthread_attr_init(&mut attr);
                pthread_getattr_np(pthread_self(), &mut attr);
                pthread_attr_getstack(&attr, &mut lowest_address, &mut size);
                pthread_attr_destroy(&mut attr);

                let size = size as u64;
                let highest_address = lowest_address as u64 + size;

                Self {
                    highest_address,
                    size,
                }
            }
        }

        #[cfg(target_os = "windows")]
        {
            unsafe {
                use std::mem;
                use std::ptr;

                #[repr(C)]
                struct MEMORY_BASIC_INFORMATION {
                    base_address: *mut std::ffi::c_void,
                    allocation_base: *mut std::ffi::c_void,
                    allocation_protect: u32,
                    region_size: usize,
                    state: u32,
                    protect: u32,
                    type_: u32,
                }

                extern "system" {
                    fn VirtualQuery(
                        lp_address: *const std::ffi::c_void,
                        lp_buffer: *mut MEMORY_BASIC_INFORMATION,
                        dw_length: usize,
                    ) -> usize;
                }

                let mut stack_info: MEMORY_BASIC_INFORMATION = mem::zeroed();
                let stack_pointer: *const std::ffi::c_void = ptr::null();

                VirtualQuery(
                    stack_pointer,
                    &mut stack_info,
                    mem::size_of::<MEMORY_BASIC_INFORMATION>(),
                );

                Self {
                    stack_base: stack_info.allocation_base as u64,
                    stack_size: stack_info.region_size as u64,
                }
            }
        }

        #[cfg(not(any(target_os = "macos", target_os = "linux", target_os = "windows")))]
        panic!("Unsupported platform")
    }

    /// How much stack space is left?
    pub fn left(&self) -> u64 {
        let stack_var: u64 = 0;
        let stack_top = &stack_var as *const u64;

        self.size
            .checked_sub(
                self.highest_address
                    .checked_sub(stack_top as u64)
                    .expect("we assume the stack grows down"),
            )
            .expect("we assume we haven't exhausted the whole stack")
    }
}