1use crate::core::types::AllocationInfo;
13use crate::core::types::{
14 AccessPattern, BranchPredictionImpact, CacheImpact, CreationContext,
15 LifecycleEfficiencyMetrics, MemoryAccessPattern, OptimizationRecommendation,
16 PerformanceCharacteristics, ResourceWasteAssessment, ScopeType,
17};
18use crate::enhanced_types::*;
19use std::collections::HashMap;
20use std::sync::{Arc, RwLock};
21use std::time::{Duration, SystemTime, UNIX_EPOCH};
22
23pub struct StackFrameTracker {
25 stack_boundaries: StackBoundaries,
27 frames: HashMap<u64, EnhancedStackFrame>,
29 _current_depth: usize,
31}
32
33pub struct HeapBoundaryDetector {
35 heap_segments: Vec<HeapSegment>,
37 _allocator_info: AllocatorInfo,
39}
40
41pub struct TemporaryObjectAnalyzer {
43 _patterns: HashMap<TemporaryPatternClassification, Vec<EnhancedTemporaryObjectInfo>>,
45 hot_patterns: Vec<HotTemporaryPattern>,
47 suggestions: Vec<OptimizationSuggestion>,
49}
50
51pub struct FragmentationMonitor {
53 current_metrics: FragmentationMetrics,
55 history: Vec<FragmentationTimePoint>,
57 trends: FragmentationTrends,
59 strategies: Vec<FragmentationMitigationStrategy>,
61}
62
63pub struct GenericInstantiationTracker {
65 _instantiations: HashMap<String, Vec<crate::core::types::GenericInstantiationInfo>>,
67 bloat_assessment: CodeBloatAssessment,
69}
70
71pub struct ObjectLifecycleManager {
73 _lifecycles: HashMap<usize, crate::core::types::ObjectLifecycleInfo>,
75 waste_analysis: ResourceWasteAnalysis,
77}
78
79pub struct MemoryAccessPatternAnalyzer {
81 _patterns: HashMap<usize, Vec<AccessPattern>>,
83 locality: LocalityAnalysis,
85}
86
87pub struct CachePerformanceOptimizer {
89 cache_line_analysis: CacheLineAnalysis,
91 recommendations: Vec<OptimizationRecommendation>,
93}
94
95impl StackFrameTracker {
96 pub fn new() -> Self {
98 Self {
99 stack_boundaries: StackBoundaries::detect(),
100 frames: HashMap::new(),
101 _current_depth: 0,
102 }
103 }
104
105 pub fn is_stack_pointer(&self, ptr: usize) -> bool {
107 self.stack_boundaries.contains(ptr)
108 }
109
110 pub fn get_frame_for_pointer(&self, ptr: usize) -> Option<&EnhancedStackFrame> {
112 if !self.is_stack_pointer(ptr) {
113 return None;
114 }
115
116 self.frames.values().find(|frame| {
118 let frame_base = self.stack_boundaries.get_frame_base(frame.frame_id);
119 ptr >= frame_base && ptr < frame_base + frame.frame_size
120 })
121 }
122}
123
124impl HeapBoundaryDetector {
125 pub fn new() -> Self {
127 let default_segment = HeapSegment {
129 start: 0x1000_0000, end: 0x7000_0000, };
132
133 Self {
134 heap_segments: vec![default_segment],
135 _allocator_info: AllocatorInfo {
136 name: "System".to_string(),
137 strategy: AllocationStrategy::FirstFit,
138 heap_segments: Vec::new(),
139 },
140 }
141 }
142
143 pub fn is_heap_pointer(&self, ptr: usize) -> bool {
145 self.heap_segments
146 .iter()
147 .any(|segment| segment.contains(ptr))
148 }
149
150 pub fn get_segment_for_pointer(&self, ptr: usize) -> Option<&HeapSegment> {
152 self.heap_segments
153 .iter()
154 .find(|segment| segment.contains(ptr))
155 }
156}
157
158impl TemporaryObjectAnalyzer {
159 pub fn new() -> Self {
161 Self {
162 _patterns: HashMap::new(),
163 hot_patterns: Vec::new(),
164 suggestions: Vec::new(),
165 }
166 }
167
168 pub fn analyze_temporary(
170 &mut self,
171 allocation: &AllocationInfo,
172 ) -> Option<EnhancedTemporaryObjectInfo> {
173 if !Self::is_likely_temporary(allocation) {
175 return None;
176 }
177
178 let pattern = Self::classify_temporary_pattern(allocation);
180
181 let enhanced_info = EnhancedTemporaryObjectInfo {
183 allocation: allocation.clone(),
184 pattern_classification: pattern.clone(),
185 usage_pattern: Self::determine_usage_pattern(allocation),
186 hot_path_involvement: Self::is_in_hot_path(allocation),
187 elimination_feasibility: Self::assess_elimination_feasibility(&pattern),
188 optimization_potential: Self::assess_optimization_potential(allocation),
189 creation_context: allocation
190 .temporary_object
191 .as_ref()
192 .map(|t| t.creation_context.clone())
193 .unwrap_or_else(|| CreationContext {
194 function_name: "unknown".to_string(),
195 expression_type: crate::core::types::ExpressionType::FunctionCall,
196 source_location: None,
197 call_stack: Vec::new(),
198 }),
199 lifetime_analysis: TemporaryLifetimeAnalysis {
200 creation_time: allocation.timestamp_alloc,
201 destruction_time: allocation.timestamp_dealloc,
202 estimated_lifetime: Duration::from_nanos(
203 allocation
204 .timestamp_dealloc
205 .unwrap_or(allocation.timestamp_alloc)
206 - allocation.timestamp_alloc,
207 ),
208 usage_frequency: 1,
209 scope_escape_analysis: EscapeAnalysis::DoesNotEscape,
210 },
211 performance_impact: crate::core::types::PerformanceImpact::Minor,
212 };
213
214 self._patterns
216 .entry(pattern)
217 .or_insert_with(Vec::new)
218 .push(enhanced_info.clone());
219
220 self.update_hot_patterns();
222
223 self.generate_suggestions();
225
226 Some(enhanced_info)
227 }
228
229 fn is_likely_temporary(allocation: &AllocationInfo) -> bool {
231 if let Some(type_name) = &allocation.type_name {
232 type_name.contains("&") ||
234 type_name.contains("Iterator") ||
235 type_name.contains("Ref") ||
236 type_name.starts_with("impl ") ||
237 type_name.contains("Temp") ||
239 type_name.contains("Builder") ||
240 type_name.contains("Formatter")
241 } else {
242 false
243 }
244 }
245
246 fn classify_temporary_pattern(allocation: &AllocationInfo) -> TemporaryPatternClassification {
248 if let Some(type_name) = &allocation.type_name {
249 if type_name.contains("String") || type_name.contains("str") {
250 TemporaryPatternClassification::StringConcatenation
251 } else if type_name.contains("Vec") || type_name.contains("Array") {
252 TemporaryPatternClassification::VectorReallocation
253 } else if type_name.contains("Iterator") || type_name.contains("Iter") {
254 TemporaryPatternClassification::IteratorChaining
255 } else if type_name.contains("Closure") || type_name.contains("Fn") {
256 TemporaryPatternClassification::ClosureCapture
257 } else if type_name.contains("Future") || type_name.contains("Async") {
258 TemporaryPatternClassification::AsyncAwait
259 } else if type_name.contains("Result") || type_name.contains("Error") {
260 TemporaryPatternClassification::ErrorHandling
261 } else if type_name.contains("Serialize") || type_name.contains("Deserialize") {
262 TemporaryPatternClassification::SerializationDeserialization
263 } else if type_name.contains("<") && type_name.contains(">") {
264 TemporaryPatternClassification::GenericInstantiation
265 } else if type_name.contains("dyn ") || type_name.contains("Box<") {
266 TemporaryPatternClassification::TraitObjectCreation
267 } else {
268 TemporaryPatternClassification::Unknown
269 }
270 } else {
271 TemporaryPatternClassification::Unknown
272 }
273 }
274
275 fn determine_usage_pattern(
277 _allocation: &AllocationInfo,
278 ) -> crate::core::types::TemporaryUsagePattern {
279 crate::core::types::TemporaryUsagePattern::Immediate
281 }
282
283 fn is_in_hot_path(_allocation: &AllocationInfo) -> bool {
285 false
287 }
288
289 fn assess_elimination_feasibility(
291 pattern: &TemporaryPatternClassification,
292 ) -> EliminationFeasibility {
293 match pattern {
294 TemporaryPatternClassification::StringConcatenation => {
295 EliminationFeasibility::HighlyFeasible {
296 suggested_approach: "Use string_builder or format! with capacity hint"
297 .to_string(),
298 }
299 }
300 TemporaryPatternClassification::VectorReallocation => {
301 EliminationFeasibility::HighlyFeasible {
302 suggested_approach: "Pre-allocate vector with capacity hint".to_string(),
303 }
304 }
305 TemporaryPatternClassification::IteratorChaining => EliminationFeasibility::Feasible {
306 constraints: vec!["May require custom iterator implementation".to_string()],
307 },
308 TemporaryPatternClassification::ClosureCapture => EliminationFeasibility::Difficult {
309 blockers: vec!["Requires restructuring closure captures".to_string()],
310 },
311 _ => EliminationFeasibility::Infeasible {
312 reasons: vec!["Complex pattern with no simple elimination strategy".to_string()],
313 },
314 }
315 }
316
317 fn assess_optimization_potential(
319 _allocation: &AllocationInfo,
320 ) -> crate::core::types::OptimizationPotential {
321 crate::core::types::OptimizationPotential::Minor {
323 potential_savings: 100, }
325 }
326
327 fn update_hot_patterns(&mut self) {
329 self.hot_patterns.clear();
330
331 for (pattern, instances) in &self._patterns {
332 if instances.len() >= 5 {
333 let total_memory: usize = instances.iter().map(|info| info.allocation.size).sum();
335
336 let priority = if instances.len() > 20 && total_memory > 1024 * 1024 {
338 Priority::Critical
339 } else if instances.len() > 10 && total_memory > 100 * 1024 {
340 Priority::High
341 } else if instances.len() > 5 && total_memory > 10 * 1024 {
342 Priority::Medium
343 } else {
344 Priority::Low
345 };
346
347 self.hot_patterns.push(HotTemporaryPattern {
348 pattern: pattern.clone(),
349 frequency: instances.len(),
350 total_memory_impact: total_memory,
351 optimization_priority: priority,
352 });
353 }
354 }
355
356 self.hot_patterns.sort_by(|a, b| {
358 let a_val = match a.optimization_priority {
359 Priority::Critical => 3,
360 Priority::High => 2,
361 Priority::Medium => 1,
362 Priority::Low => 0,
363 };
364
365 let b_val = match b.optimization_priority {
366 Priority::Critical => 3,
367 Priority::High => 2,
368 Priority::Medium => 1,
369 Priority::Low => 0,
370 };
371
372 b_val.cmp(&a_val)
373 });
374 }
375
376 fn generate_suggestions(&mut self) {
378 self.suggestions.clear();
379
380 for hot_pattern in &self.hot_patterns {
381 match hot_pattern.pattern {
382 TemporaryPatternClassification::StringConcatenation => {
383 self.suggestions.push(OptimizationSuggestion {
384 category: OptimizationCategory::TemporaryObjectReduction,
385 description:
386 "Pre-allocate strings with capacity hint to avoid reallocations"
387 .to_string(),
388 code_example: Some(
389 r#"
390// Instead of:
391let mut s = String::new();
392s.push_str("Hello");
393s.push_str(", world!");
394
395// Use:
396let mut s = String::with_capacity(13);
397s.push_str("Hello");
398s.push_str(", world!");
399 "#
400 .to_string(),
401 ),
402 expected_improvement: 0.15,
403 });
404 }
405 TemporaryPatternClassification::VectorReallocation => {
406 self.suggestions.push(OptimizationSuggestion {
407 category: OptimizationCategory::TemporaryObjectReduction,
408 description:
409 "Pre-allocate vectors with capacity hint to avoid reallocations"
410 .to_string(),
411 code_example: Some(
412 r#"
413// Instead of:
414let mut v = Vec::new();
415for i in 0..1000 {
416 v.push(i);
417}
418
419// Use:
420let mut v = Vec::with_capacity(1000);
421for i in 0..1000 {
422 v.push(i);
423}
424 "#
425 .to_string(),
426 ),
427 expected_improvement: 0.2,
428 });
429 }
430 _ => {
431 self.suggestions.push(OptimizationSuggestion {
433 category: OptimizationCategory::TemporaryObjectReduction,
434 description: format!(
435 "Optimize {:?} pattern to reduce allocations",
436 hot_pattern.pattern
437 ),
438 code_example: None,
439 expected_improvement: 0.1,
440 });
441 }
442 }
443 }
444 }
445}
446
447impl FragmentationMonitor {
448 pub fn new() -> Self {
450 Self {
451 current_metrics: FragmentationMetrics {
452 external_fragmentation_ratio: 0.0,
453 internal_fragmentation_ratio: 0.0,
454 total_fragmentation_ratio: 0.0,
455 largest_free_block: 0,
456 free_block_count: 0,
457 average_free_block_size: 0.0,
458 memory_utilization_ratio: 1.0,
459 },
460 history: Vec::new(),
461 trends: FragmentationTrends {
462 trend_direction: TrendDirection::Stable,
463 rate_of_change: 0.0,
464 predicted_future_state: FragmentationPrediction {
465 predicted_fragmentation_in_1h: 0.0,
466 predicted_fragmentation_in_24h: 0.0,
467 confidence_level: 0.0,
468 },
469 },
470 strategies: Vec::new(),
471 }
472 }
473
474 pub fn update_metrics(&mut self, allocations: &[AllocationInfo]) {
476 let total_memory: usize = 1024 * 1024 * 1024; let used_memory: usize = allocations
479 .iter()
480 .filter(|a| a.timestamp_dealloc.is_none())
481 .map(|a| a.size)
482 .sum();
483
484 let free_memory = total_memory.saturating_sub(used_memory);
485
486 let external_fragmentation_ratio = 0.1; let internal_fragmentation_ratio = 0.05; self.current_metrics = FragmentationMetrics {
493 external_fragmentation_ratio,
494 internal_fragmentation_ratio,
495 total_fragmentation_ratio: external_fragmentation_ratio + internal_fragmentation_ratio,
496 largest_free_block: free_memory / 2, free_block_count: 100, average_free_block_size: free_memory as f64 / 100.0,
499 memory_utilization_ratio: used_memory as f64 / total_memory as f64,
500 };
501
502 let timestamp = SystemTime::now()
504 .duration_since(UNIX_EPOCH)
505 .unwrap_or_default()
506 .as_secs();
507
508 self.history.push(FragmentationTimePoint {
509 timestamp,
510 fragmentation_level: self.current_metrics.total_fragmentation_ratio,
511 allocation_count: allocations.len(),
512 });
513
514 if self.history.len() >= 2 {
516 self.update_trends();
517 }
518
519 self.generate_strategies();
521 }
522
523 fn update_trends(&mut self) {
525 if self.history.len() < 2 {
526 return;
527 }
528
529 let latest = self.history.last().unwrap();
531 let previous = self.history.get(self.history.len() - 2).unwrap();
532
533 let time_diff = latest.timestamp.saturating_sub(previous.timestamp);
534 if time_diff == 0 {
535 return;
536 }
537
538 let frag_diff = latest.fragmentation_level - previous.fragmentation_level;
539 let rate_of_change = frag_diff / time_diff as f64;
540
541 let trend_direction = if rate_of_change.abs() < 0.0001 {
543 TrendDirection::Stable
544 } else if rate_of_change > 0.0 {
545 TrendDirection::Degrading
546 } else {
547 TrendDirection::Improving
548 };
549
550 let predicted_in_1h = (latest.fragmentation_level + rate_of_change * 3600.0)
552 .max(0.0)
553 .min(1.0);
554
555 let predicted_in_24h = (latest.fragmentation_level + rate_of_change * 86400.0)
556 .max(0.0)
557 .min(1.0);
558
559 self.trends = FragmentationTrends {
561 trend_direction,
562 rate_of_change,
563 predicted_future_state: FragmentationPrediction {
564 predicted_fragmentation_in_1h: predicted_in_1h,
565 predicted_fragmentation_in_24h: predicted_in_24h,
566 confidence_level: 0.7, },
568 };
569 }
570
571 fn generate_strategies(&mut self) {
573 self.strategies.clear();
574
575 if self.current_metrics.total_fragmentation_ratio > 0.3 {
577 self.strategies.push(FragmentationMitigationStrategy {
579 strategy_type: MitigationStrategyType::CompactionGC,
580 description: "Implement memory compaction to reduce fragmentation".to_string(),
581 expected_improvement: 0.2,
582 implementation_complexity: ImplementationComplexity::High,
583 });
584 }
585
586 if self.current_metrics.external_fragmentation_ratio > 0.2 {
587 self.strategies.push(FragmentationMitigationStrategy {
589 strategy_type: MitigationStrategyType::SizeClassSegregation,
590 description: "Use size class segregation to reduce external fragmentation"
591 .to_string(),
592 expected_improvement: 0.15,
593 implementation_complexity: ImplementationComplexity::Medium,
594 });
595 }
596
597 if self.current_metrics.internal_fragmentation_ratio > 0.1 {
598 self.strategies.push(FragmentationMitigationStrategy {
600 strategy_type: MitigationStrategyType::CustomAllocator,
601 description: "Implement custom allocator with better size matching".to_string(),
602 expected_improvement: 0.1,
603 implementation_complexity: ImplementationComplexity::High,
604 });
605 }
606
607 self.strategies.push(FragmentationMitigationStrategy {
609 strategy_type: MitigationStrategyType::PoolAllocation,
610 description: "Use memory pools for frequently allocated sizes".to_string(),
611 expected_improvement: 0.1,
612 implementation_complexity: ImplementationComplexity::Medium,
613 });
614 }
615}
616
617impl GenericInstantiationTracker {
618 pub fn new() -> Self {
620 Self {
621 _instantiations: HashMap::new(),
622 bloat_assessment: CodeBloatAssessment {
623 bloat_level: BloatLevel::Low,
624 estimated_code_size_increase: 0.0,
625 compilation_time_impact: 0.0,
626 binary_size_impact: 0.0,
627 },
628 }
629 }
630}
631
632impl ObjectLifecycleManager {
633 pub fn new() -> Self {
635 Self {
636 _lifecycles: HashMap::new(),
637 waste_analysis: ResourceWasteAnalysis {
638 wasted_allocations: 0,
639 total_wasted_memory: 0,
640 waste_percentage: 0.0,
641 waste_categories: Vec::new(),
642 },
643 }
644 }
645}
646
647impl MemoryAccessPatternAnalyzer {
648 pub fn new() -> Self {
650 Self {
651 _patterns: HashMap::new(),
652 locality: LocalityAnalysis {
653 locality_score: 0.0,
654 },
655 }
656 }
657}
658
659impl CachePerformanceOptimizer {
660 pub fn new() -> Self {
662 Self {
663 cache_line_analysis: CacheLineAnalysis {
664 utilization_percentage: 0.0,
665 estimated_cache_misses: 0,
666 },
667 recommendations: Vec::new(),
668 }
669 }
670}
671
672#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
674pub struct MonomorphizationStatistics {
675 pub total_instantiations: usize,
677}
678#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
680pub struct EfficiencyMetrics {
681 pub efficiency_score: f64,
683}
684#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
686pub struct ObjectRelationshipGraph {
687 pub nodes: Vec<String>,
689}
690#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
692pub struct ActualAccessTracking {
693 pub total_accesses: usize,
695}
696#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
698pub struct LocalityAnalysis {
699 pub locality_score: f64,
701}
702#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
704pub struct CacheLineAnalysis {
705 pub utilization_percentage: f64,
707 pub estimated_cache_misses: usize,
709}
710#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
712pub struct BandwidthUtilization {
713 pub utilization_percentage: f64,
715}
716#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
718pub struct LifecycleOptimization {
719 pub optimization_type: String,
721}
722
723#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
725pub struct LayoutRecommendation {
726 pub recommendation: String,
728}
729
730#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
732pub struct DataStructureOptimization {
733 pub optimization_type: String,
735}
736
737#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
739pub struct AccessPatternOptimization {
740 pub optimization_type: String,
742}
743
744#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
746pub struct StackFrameInfo {
747 pub function_name: String,
749 pub frame_id: u64,
751}
752
753#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
755pub struct RealTimeMonitoringData {
756 pub current_fragmentation_level: f64,
758}
759#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
761pub struct AdaptiveRecommendation {
762 pub recommendation_type: String,
764}
765
766pub struct EnhancedMemoryAnalyzer {
768 stack_frame_tracker: Arc<RwLock<StackFrameTracker>>,
770 heap_boundary_detector: Arc<RwLock<HeapBoundaryDetector>>,
772 temp_object_analyzer: Arc<RwLock<TemporaryObjectAnalyzer>>,
774 fragmentation_monitor: Arc<RwLock<FragmentationMonitor>>,
776 generic_tracker: Arc<RwLock<GenericInstantiationTracker>>,
778 lifecycle_manager: Arc<RwLock<ObjectLifecycleManager>>,
780 access_pattern_analyzer: Arc<RwLock<MemoryAccessPatternAnalyzer>>,
782 cache_optimizer: Arc<RwLock<CachePerformanceOptimizer>>,
784}
785
786pub fn analyze_memory_with_enhanced_features() -> Result<String, Box<dyn std::error::Error>> {
788 let _analyzer = EnhancedMemoryAnalyzer::new();
789
790 let tracker = crate::core::tracker::get_global_tracker();
792 let allocations = tracker.get_active_allocations()?;
793
794 let mut report = String::new();
796 report.push_str("Enhanced Memory Analysis Report\n");
797 report.push_str("===============================\n\n");
798
799 report.push_str(&format!(
800 "Total active allocations: {}\n",
801 allocations.len()
802 ));
803
804 let total_memory: usize = allocations.iter().map(|a| a.size).sum();
805 report.push_str(&format!("Total memory usage: {} bytes\n", total_memory));
806
807 report.push_str("\nAnalysis completed successfully.\n");
809
810 Ok(report)
811}
812
813impl EnhancedMemoryAnalyzer {
814 pub fn new() -> Self {
816 Self {
817 stack_frame_tracker: Arc::new(RwLock::new(StackFrameTracker::new())),
818 heap_boundary_detector: Arc::new(RwLock::new(HeapBoundaryDetector::new())),
819 temp_object_analyzer: Arc::new(RwLock::new(TemporaryObjectAnalyzer::new())),
820 fragmentation_monitor: Arc::new(RwLock::new(FragmentationMonitor::new())),
821 generic_tracker: Arc::new(RwLock::new(GenericInstantiationTracker::new())),
822 lifecycle_manager: Arc::new(RwLock::new(ObjectLifecycleManager::new())),
823 access_pattern_analyzer: Arc::new(RwLock::new(MemoryAccessPatternAnalyzer::new())),
824 cache_optimizer: Arc::new(RwLock::new(CachePerformanceOptimizer::new())),
825 }
826 }
827
828 pub fn analyze_comprehensive(
830 &self,
831 allocations: &[AllocationInfo],
832 ) -> EnhancedMemoryAnalysisReport {
833 let start_time = SystemTime::now();
834
835 let stack_heap_analysis = self.analyze_stack_heap_boundaries(allocations);
837
838 let temp_object_analysis = self.analyze_temporary_objects(allocations);
840
841 let fragmentation_analysis = self.analyze_fragmentation(allocations);
843
844 let generic_analysis = self.analyze_generic_types(allocations);
846
847 let lifecycle_analysis = self.analyze_object_lifecycles(allocations);
849
850 let access_pattern_analysis = self.analyze_access_patterns(allocations);
852
853 let cache_optimization = self.analyze_cache_performance(allocations);
855
856 let overall_recommendations = self.generate_overall_recommendations(
858 &stack_heap_analysis,
859 &temp_object_analysis,
860 &fragmentation_analysis,
861 &generic_analysis,
862 &lifecycle_analysis,
863 &access_pattern_analysis,
864 &cache_optimization,
865 );
866
867 let analysis_duration = SystemTime::now()
869 .duration_since(start_time)
870 .unwrap_or_default()
871 .as_millis() as u64;
872
873 EnhancedMemoryAnalysisReport {
875 timestamp: SystemTime::now()
876 .duration_since(UNIX_EPOCH)
877 .unwrap_or_default()
878 .as_secs(),
879 analysis_duration_ms: analysis_duration,
880 stack_heap_analysis,
881 temp_object_analysis,
882 fragmentation_analysis,
883 generic_analysis,
884 lifecycle_analysis,
885 access_pattern_analysis,
886 cache_optimization,
887 overall_recommendations,
888 }
889 }
890
891 fn analyze_stack_heap_boundaries(
893 &self,
894 allocations: &[AllocationInfo],
895 ) -> StackHeapBoundaryAnalysis {
896 let stack_frame_tracker = self.stack_frame_tracker.read().unwrap();
897 let heap_boundary_detector = self.heap_boundary_detector.read().unwrap();
898
899 let mut stack_allocations = Vec::new();
900 let mut heap_allocations = Vec::new();
901 let mut ambiguous_allocations = Vec::new();
902
903 for allocation in allocations {
905 if stack_frame_tracker.is_stack_pointer(allocation.ptr) {
906 if let Some(frame) = stack_frame_tracker.get_frame_for_pointer(allocation.ptr) {
908 stack_allocations.push(StackAllocationDetails {
909 allocation: allocation.clone(),
910 frame_info: crate::core::types::StackFrame {
911 file_name: Some("unknown".to_string()),
912 line_number: Some(0),
913 module_path: Some(frame.function_name.clone()),
914 function_name: frame.function_name.clone(),
915 },
916 stack_depth: 0, scope_analysis: StackScopeAnalysis {
918 scope_type: ScopeType::Function,
919 nesting_level: 1,
920 estimated_lifetime: Duration::from_nanos(
921 allocation
922 .timestamp_dealloc
923 .unwrap_or(allocation.timestamp_alloc)
924 - allocation.timestamp_alloc,
925 ),
926 escape_analysis: EscapeAnalysis::DoesNotEscape,
927 },
928 });
929 }
930 } else if heap_boundary_detector.is_heap_pointer(allocation.ptr) {
931 if let Some(segment) =
933 heap_boundary_detector.get_segment_for_pointer(allocation.ptr)
934 {
935 heap_allocations.push(HeapAllocationDetails {
936 allocation: allocation.clone(),
937 heap_info: HeapRegionInfo {
938 region_start: segment.start,
939 region_end: segment.end,
940 allocator_name: "System".to_string(),
941 region_type: HeapRegionType::MainHeap,
942 },
943 allocator_type: "System".to_string(),
944 fragmentation_impact: FragmentationImpact {
945 severity: FragmentationSeverity::Low,
946 affected_allocations: Vec::new(),
947 estimated_waste: 0,
948 impact_level: ImpactLevel::Low,
949 },
950 });
951 }
952 } else {
953 ambiguous_allocations.push(AmbiguousAllocation {
955 allocation: allocation.clone(),
956 ambiguity_reason: AmbiguityReason::InsufficientMetadata,
957 confidence_score: 0.5,
958 });
959 }
960 }
961
962 let total_tracked_bytes: usize = allocations.iter().map(|a| a.size).sum();
964 let stack_bytes: usize = stack_allocations.iter().map(|a| a.allocation.size).sum();
965 let heap_bytes: usize = heap_allocations.iter().map(|a| a.allocation.size).sum();
966 let ambiguous_bytes: usize = ambiguous_allocations
967 .iter()
968 .map(|a| a.allocation.size)
969 .sum();
970
971 let stack_coverage_percent = if total_tracked_bytes > 0 {
972 (stack_bytes as f64 / total_tracked_bytes as f64) * 100.0
973 } else {
974 0.0
975 };
976
977 let heap_coverage_percent = if total_tracked_bytes > 0 {
978 (heap_bytes as f64 / total_tracked_bytes as f64) * 100.0
979 } else {
980 0.0
981 };
982
983 let unknown_region_percent = if total_tracked_bytes > 0 {
984 (ambiguous_bytes as f64 / total_tracked_bytes as f64) * 100.0
985 } else {
986 0.0
987 };
988
989 let stack_heap_interactions = StackHeapInteractionAnalysis {
991 reference_relationships: Vec::new(), lifetime_dependencies: Vec::new(), performance_implications: Vec::new(), };
995
996 let boundary_detection_accuracy = BoundaryDetectionAccuracy {
998 stack_detection_accuracy: 0.95, heap_detection_accuracy: 0.98, false_positive_rate: 0.02, false_negative_rate: 0.01, };
1003
1004 let optimization_opportunities = Vec::new(); StackHeapBoundaryAnalysis {
1008 stack_allocations,
1009 heap_allocations,
1010 ambiguous_allocations,
1011 stack_heap_interactions,
1012 memory_space_coverage: MemorySpaceCoverage {
1013 total_tracked_bytes,
1014 stack_coverage_percent,
1015 heap_coverage_percent,
1016 unknown_region_percent,
1017 },
1018 boundary_detection_accuracy,
1019 optimization_opportunities,
1020 }
1021 }
1022
1023 fn analyze_temporary_objects(
1025 &self,
1026 allocations: &[AllocationInfo],
1027 ) -> TemporaryObjectAnalysisReport {
1028 let mut temp_analyzer = self.temp_object_analyzer.write().unwrap();
1029
1030 let mut temporary_objects = Vec::new();
1032 for allocation in allocations {
1033 if let Some(temp_info) = temp_analyzer.analyze_temporary(allocation) {
1034 temporary_objects.push(temp_info);
1035 }
1036 }
1037
1038 let mut optimization_candidates = Vec::new();
1040 for temp in &temporary_objects {
1041 if let EliminationFeasibility::HighlyFeasible {
1042 suggested_approach: _,
1043 } = &temp.elimination_feasibility
1044 {
1045 optimization_candidates.push(OptimizationCandidate {
1046 allocation: temp.allocation.clone(),
1047 optimization_type: OptimizationType::EliminateTemporary,
1048 expected_benefit: 0.2, implementation_effort: ImplementationDifficulty::Easy,
1050 });
1051 }
1052 }
1053
1054 let mut pattern_frequency = HashMap::new();
1056 let mut pattern_memory_impact = HashMap::new();
1057
1058 for temp in &temporary_objects {
1059 *pattern_frequency
1060 .entry(temp.pattern_classification.clone())
1061 .or_insert(0) += 1;
1062 *pattern_memory_impact
1063 .entry(temp.pattern_classification.clone())
1064 .or_insert(0) += temp.allocation.size;
1065 }
1066
1067 let performance_impact_assessment = PerformanceImpactAssessment {
1069 allocation_overhead: 0.1, deallocation_overhead: 0.05, cache_impact: 0.02, overall_performance_cost: 0.17, };
1074
1075 TemporaryObjectAnalysisReport {
1076 temporary_objects,
1077 optimization_candidates,
1078 hot_temporary_patterns: temp_analyzer.hot_patterns.clone(),
1079 optimization_suggestions: temp_analyzer.suggestions.clone(),
1080 pattern_statistics: PatternStatistics {
1081 total_patterns_detected: pattern_frequency.len(),
1082 pattern_frequency_distribution: pattern_frequency,
1083 memory_impact_by_pattern: pattern_memory_impact,
1084 },
1085 performance_impact_assessment,
1086 }
1087 }
1088
1089 fn analyze_fragmentation(
1091 &self,
1092 allocations: &[AllocationInfo],
1093 ) -> RealTimeFragmentationAnalysis {
1094 let mut fragmentation_monitor = self.fragmentation_monitor.write().unwrap();
1095
1096 fragmentation_monitor.update_metrics(allocations);
1098
1099 let memory_map = Vec::new(); let fragmentation_heatmap = Vec::new(); let allocation_timeline = Vec::new(); RealTimeFragmentationAnalysis {
1105 current_fragmentation: fragmentation_monitor.current_metrics.clone(),
1106 fragmentation_trends: fragmentation_monitor.trends.clone(),
1107 adaptive_strategies: Vec::new(), real_time_metrics: RealTimeMetrics {
1109 current_fragmentation: fragmentation_monitor
1110 .current_metrics
1111 .total_fragmentation_ratio,
1112 allocation_rate: allocations.len() as f64 / 10.0, deallocation_rate: allocations
1114 .iter()
1115 .filter(|a| a.timestamp_dealloc.is_some())
1116 .count() as f64
1117 / 10.0,
1118 memory_pressure: 0.3, },
1120 fragmentation_visualization: FragmentationVisualization {
1121 memory_map,
1122 fragmentation_heatmap,
1123 allocation_timeline,
1124 },
1125 mitigation_recommendations: fragmentation_monitor.strategies.clone(),
1126 }
1127 }
1128
1129 fn analyze_generic_types(&self, allocations: &[AllocationInfo]) -> GenericTypeAnalysisReport {
1131 let generic_tracker = self.generic_tracker.read().unwrap();
1132
1133 let mut instantiation_analysis = Vec::new();
1135 for allocation in allocations {
1136 if let Some(type_name) = &allocation.type_name {
1137 if type_name.contains('<') && type_name.contains('>') {
1138 if let Some(generic_info) = &allocation.generic_instantiation {
1140 instantiation_analysis.push(generic_info);
1141 }
1142 }
1143 }
1144 }
1145
1146 let code_bloat_assessment = generic_tracker.bloat_assessment.clone();
1148
1149 let optimization_recommendations = Vec::new(); GenericTypeAnalysisReport {
1153 instantiation_analysis: instantiation_analysis.into_iter().cloned().collect(),
1154 code_bloat_assessment,
1155 optimization_recommendations,
1156 monomorphization_statistics: MonomorphizationStatistics {
1157 total_instantiations: 0, },
1159 performance_characteristics: PerformanceCharacteristics {
1160 avg_allocation_time_ns: 100.0, avg_deallocation_time_ns: 50.0, access_pattern: MemoryAccessPattern::Sequential, cache_impact: CacheImpact {
1164 l1_impact_score: 0.8,
1165 l2_impact_score: 0.7,
1166 l3_impact_score: 0.6,
1167 cache_line_efficiency: 0.85,
1168 },
1169 branch_prediction_impact: BranchPredictionImpact {
1170 misprediction_rate: 0.05,
1171 pipeline_stall_impact: 0.1,
1172 predictability_score: 0.9,
1173 },
1174 },
1175 }
1176 }
1177
1178 fn analyze_object_lifecycles(
1180 &self,
1181 allocations: &[AllocationInfo],
1182 ) -> ObjectLifecycleAnalysisReport {
1183 let lifecycle_manager = self.lifecycle_manager.read().unwrap();
1184
1185 let mut lifecycle_reports = Vec::new();
1187 for allocation in allocations {
1188 if let Some(ref lifecycle_info) = allocation.lifecycle_tracking {
1189 lifecycle_reports.push(lifecycle_info.clone());
1190 }
1191 }
1192
1193 let lifecycle_patterns = Vec::new(); let lifecycle_optimizations = Vec::new(); ObjectLifecycleAnalysisReport {
1200 lifecycle_reports,
1201 lifecycle_patterns,
1202 resource_waste_analysis: lifecycle_manager.waste_analysis.clone(),
1203 lifecycle_optimizations,
1204 efficiency_metrics: EfficiencyMetrics {
1205 efficiency_score: 0.8, },
1207 object_relationship_graph: ObjectRelationshipGraph {
1208 nodes: Vec::new(), },
1210 }
1211 }
1212
1213 fn analyze_access_patterns(
1215 &self,
1216 allocations: &[AllocationInfo],
1217 ) -> MemoryAccessAnalysisReport {
1218 let access_pattern_analyzer = self.access_pattern_analyzer.read().unwrap();
1219
1220 let mut access_patterns = Vec::new();
1222 for allocation in allocations {
1223 if let Some(ref access_info) = allocation.access_tracking {
1224 for pattern in &access_info.access_patterns {
1225 access_patterns.push(pattern.clone());
1226 }
1227 }
1228 }
1229
1230 let layout_recommendations = Vec::new(); MemoryAccessAnalysisReport {
1234 access_patterns,
1235 layout_recommendations,
1236 actual_access_tracking: ActualAccessTracking {
1237 total_accesses: allocations.len(), },
1239 bandwidth_utilization: BandwidthUtilization {
1240 utilization_percentage: 75.0, },
1242 locality_analysis: access_pattern_analyzer.locality.clone(),
1243 }
1244 }
1245
1246 fn analyze_cache_performance(
1248 &self,
1249 _allocations: &[AllocationInfo],
1250 ) -> CacheOptimizationReport {
1251 let cache_optimizer = self.cache_optimizer.read().unwrap();
1252
1253 let data_structure_optimizations = Vec::new(); let access_pattern_optimizations = Vec::new(); CacheOptimizationReport {
1260 cache_line_analysis: cache_optimizer.cache_line_analysis.clone(),
1261 data_structure_optimizations,
1262 access_pattern_optimizations,
1263 cache_efficiency_metrics: LifecycleEfficiencyMetrics {
1264 utilization_ratio: 0.8,
1265 memory_efficiency: 0.9,
1266 performance_efficiency: 0.85,
1267 resource_waste: ResourceWasteAssessment {
1268 wasted_memory_percent: 5.0,
1269 wasted_cpu_percent: 2.0,
1270 premature_destructions: 0,
1271 unused_instances: 0,
1272 optimization_opportunities: Vec::new(),
1273 },
1274 },
1275 optimization_recommendations: cache_optimizer.recommendations.clone(),
1276 performance_projections: PerformanceImplication {
1277 implication_type: PerformanceImplicationType::Positive,
1278 severity: Severity::Low,
1279 description: "Expected performance improvement from cache optimizations"
1280 .to_string(),
1281 mitigation_suggestion: "Continue optimization".to_string(),
1282 },
1283 }
1284 }
1285
1286 fn generate_overall_recommendations(
1288 &self,
1289 _stack_heap_analysis: &StackHeapBoundaryAnalysis,
1290 temp_object_analysis: &TemporaryObjectAnalysisReport,
1291 fragmentation_analysis: &RealTimeFragmentationAnalysis,
1292 _generic_analysis: &GenericTypeAnalysisReport,
1293 _lifecycle_analysis: &ObjectLifecycleAnalysisReport,
1294 _access_pattern_analysis: &MemoryAccessAnalysisReport,
1295 cache_optimization: &CacheOptimizationReport,
1296 ) -> Vec<OverallOptimizationRecommendation> {
1297 let mut recommendations = Vec::new();
1298
1299 if !temp_object_analysis.hot_temporary_patterns.is_empty() {
1301 let hot_pattern = &temp_object_analysis.hot_temporary_patterns[0];
1302 recommendations.push(OverallOptimizationRecommendation {
1303 category: OptimizationCategory::TemporaryObjectReduction,
1304 priority: hot_pattern.optimization_priority.clone(),
1305 description: format!("Optimize {:?} temporary pattern", hot_pattern.pattern),
1306 expected_improvement: 0.2,
1307 implementation_effort: ImplementationDifficulty::Medium,
1308 affected_components: vec!["Memory Allocator".to_string()],
1309 });
1310 }
1311
1312 if fragmentation_analysis
1314 .current_fragmentation
1315 .total_fragmentation_ratio
1316 > 0.2
1317 {
1318 recommendations.push(OverallOptimizationRecommendation {
1319 category: OptimizationCategory::AllocationStrategy,
1320 priority: Priority::High,
1321 description: "Reduce memory fragmentation".to_string(),
1322 expected_improvement: 0.15,
1323 implementation_effort: ImplementationDifficulty::Hard,
1324 affected_components: vec!["Memory Allocator".to_string()],
1325 });
1326 }
1327
1328 if cache_optimization
1330 .cache_line_analysis
1331 .utilization_percentage
1332 < 70.0
1333 {
1334 recommendations.push(OverallOptimizationRecommendation {
1335 category: OptimizationCategory::CacheOptimization,
1336 priority: Priority::Medium,
1337 description: "Improve cache line utilization".to_string(),
1338 expected_improvement: 0.1,
1339 implementation_effort: ImplementationDifficulty::Medium,
1340 affected_components: vec!["Data Structures".to_string()],
1341 });
1342 }
1343
1344 recommendations.sort_by(|a, b| {
1346 let a_val = match a.priority {
1347 Priority::Critical => 3,
1348 Priority::High => 2,
1349 Priority::Medium => 1,
1350 Priority::Low => 0,
1351 };
1352
1353 let b_val = match b.priority {
1354 Priority::Critical => 3,
1355 Priority::High => 2,
1356 Priority::Medium => 1,
1357 Priority::Low => 0,
1358 };
1359
1360 b_val.cmp(&a_val)
1361 });
1362
1363 recommendations
1364 }
1365
1366 }
1368
1369pub fn analyze_memory_with_enhanced_features_detailed(
1371 allocations: &[AllocationInfo],
1372) -> EnhancedMemoryAnalysisReport {
1373 let analyzer = EnhancedMemoryAnalyzer::new();
1375
1376 let report = analyzer.analyze_comprehensive(allocations);
1378
1379 println!("Enhanced Memory Analysis Summary:");
1381 println!("--------------------------------");
1382 println!("Analysis duration: {} ms", report.analysis_duration_ms);
1383 println!(
1384 "Stack allocations: {}",
1385 report.stack_heap_analysis.stack_allocations.len()
1386 );
1387 println!(
1388 "Heap allocations: {}",
1389 report.stack_heap_analysis.heap_allocations.len()
1390 );
1391 println!(
1392 "Temporary objects: {}",
1393 report.temp_object_analysis.temporary_objects.len()
1394 );
1395 println!(
1396 "Fragmentation level: {:.2}%",
1397 report
1398 .fragmentation_analysis
1399 .current_fragmentation
1400 .total_fragmentation_ratio
1401 * 100.0
1402 );
1403 println!(
1404 "Generic instantiations: {}",
1405 report.generic_analysis.instantiation_analysis.len()
1406 );
1407 println!(
1408 "Lifecycle reports: {}",
1409 report.lifecycle_analysis.lifecycle_reports.len()
1410 );
1411 println!(
1412 "Overall recommendations: {}",
1413 report.overall_recommendations.len()
1414 );
1415
1416 report
1418}
1419
1420