memscope_rs/analysis/
enhanced_memory_analysis.rs

1//! Enhanced Memory Analysis Module
2//!
3//! This module provides comprehensive memory analysis capabilities including:
4//! - Precise stack and heap allocation distinction
5//! - Complete memory space coverage
6//! - Temporary object identification and optimization
7//! - Memory fragmentation monitoring with optimization suggestions
8//! - Deep generic type analysis with code bloat assessment
9//! - Complete object lifecycle tracking with resource waste identification
10//! - Memory access pattern analysis for cache optimization
11
12use crate::core::types::AllocationInfo;
13use crate::core::types::{
14    AccessPattern, BranchPredictionImpact, CacheImpact, CreationContext,
15    LifecycleEfficiencyMetrics, MemoryAccessPattern, OptimizationRecommendation,
16    PerformanceCharacteristics, ResourceWasteAssessment, ScopeType,
17};
18use crate::enhanced_types::*;
19use std::collections::HashMap;
20use std::sync::{Arc, RwLock};
21use std::time::{Duration, SystemTime, UNIX_EPOCH};
22
23/// Tracks stack frames and their allocations
24pub struct StackFrameTracker {
25    /// Stack boundaries for the current process
26    stack_boundaries: StackBoundaries,
27    /// Known stack frames
28    frames: HashMap<u64, EnhancedStackFrame>,
29    /// Current stack depth
30    _current_depth: usize,
31}
32
33/// Detects heap boundaries and segments
34pub struct HeapBoundaryDetector {
35    /// Known heap segments
36    heap_segments: Vec<HeapSegment>,
37    /// Allocator information
38    _allocator_info: AllocatorInfo,
39}
40
41/// Analyzes temporary objects for optimization
42pub struct TemporaryObjectAnalyzer {
43    /// Detected temporary object patterns
44    _patterns: HashMap<TemporaryPatternClassification, Vec<EnhancedTemporaryObjectInfo>>,
45    /// Hot temporary patterns
46    hot_patterns: Vec<HotTemporaryPattern>,
47    /// Optimization suggestions
48    suggestions: Vec<OptimizationSuggestion>,
49}
50
51/// Monitors memory fragmentation in real-time
52pub struct FragmentationMonitor {
53    /// Current fragmentation metrics
54    current_metrics: FragmentationMetrics,
55    /// Historical fragmentation data
56    history: Vec<FragmentationTimePoint>,
57    /// Fragmentation trends
58    trends: FragmentationTrends,
59    /// Mitigation strategies
60    strategies: Vec<FragmentationMitigationStrategy>,
61}
62
63/// Tracks generic type instantiations
64pub struct GenericInstantiationTracker {
65    /// Generic instantiations by type
66    _instantiations: HashMap<String, Vec<crate::core::types::GenericInstantiationInfo>>,
67    /// Code bloat assessment
68    bloat_assessment: CodeBloatAssessment,
69}
70
71/// Manages object lifecycle tracking
72pub struct ObjectLifecycleManager {
73    /// Object lifecycle information by pointer
74    _lifecycles: HashMap<usize, crate::core::types::ObjectLifecycleInfo>,
75    /// Resource waste analysis
76    waste_analysis: ResourceWasteAnalysis,
77}
78
79/// Analyzes memory access patterns
80pub struct MemoryAccessPatternAnalyzer {
81    /// Access patterns by memory region
82    _patterns: HashMap<usize, Vec<AccessPattern>>,
83    /// Locality analysis
84    locality: LocalityAnalysis,
85}
86
87/// Optimizes cache performance
88pub struct CachePerformanceOptimizer {
89    /// Cache line analysis
90    cache_line_analysis: CacheLineAnalysis,
91    /// Optimization recommendations
92    recommendations: Vec<OptimizationRecommendation>,
93}
94
95impl StackFrameTracker {
96    /// Create a new stack frame tracker
97    pub fn new() -> Self {
98        Self {
99            stack_boundaries: StackBoundaries::detect(),
100            frames: HashMap::new(),
101            _current_depth: 0,
102        }
103    }
104
105    /// Detect if a pointer is on the stack
106    pub fn is_stack_pointer(&self, ptr: usize) -> bool {
107        self.stack_boundaries.contains(ptr)
108    }
109
110    /// Get the frame for a stack pointer
111    pub fn get_frame_for_pointer(&self, ptr: usize) -> Option<&EnhancedStackFrame> {
112        if !self.is_stack_pointer(ptr) {
113            return None;
114        }
115
116        // Find the closest frame
117        self.frames.values().find(|frame| {
118            let frame_base = self.stack_boundaries.get_frame_base(frame.frame_id);
119            ptr >= frame_base && ptr < frame_base + frame.frame_size
120        })
121    }
122}
123
124impl HeapBoundaryDetector {
125    /// Create a new heap boundary detector
126    pub fn new() -> Self {
127        // Initialize with default system heap segment
128        let default_segment = HeapSegment {
129            start: 0x1000_0000, // Typical heap start on many systems
130            end: 0x7000_0000,   // Arbitrary end
131        };
132
133        Self {
134            heap_segments: vec![default_segment],
135            _allocator_info: AllocatorInfo {
136                name: "System".to_string(),
137                strategy: AllocationStrategy::FirstFit,
138                heap_segments: Vec::new(),
139            },
140        }
141    }
142
143    /// Detect if a pointer is on the heap
144    pub fn is_heap_pointer(&self, ptr: usize) -> bool {
145        self.heap_segments
146            .iter()
147            .any(|segment| segment.contains(ptr))
148    }
149
150    /// Get heap segment for a pointer
151    pub fn get_segment_for_pointer(&self, ptr: usize) -> Option<&HeapSegment> {
152        self.heap_segments
153            .iter()
154            .find(|segment| segment.contains(ptr))
155    }
156}
157
158impl TemporaryObjectAnalyzer {
159    /// Create a new temporary object analyzer  
160    pub fn new() -> Self {
161        Self {
162            _patterns: HashMap::new(),
163            hot_patterns: Vec::new(),
164            suggestions: Vec::new(),
165        }
166    }
167
168    /// Analyze a potential temporary object
169    pub fn analyze_temporary(
170        &mut self,
171        allocation: &AllocationInfo,
172    ) -> Option<EnhancedTemporaryObjectInfo> {
173        // Skip if not likely a temporary
174        if !Self::is_likely_temporary(allocation) {
175            return None;
176        }
177
178        // Classify the temporary pattern
179        let pattern = Self::classify_temporary_pattern(allocation);
180
181        // Create enhanced info
182        let enhanced_info = EnhancedTemporaryObjectInfo {
183            allocation: allocation.clone(),
184            pattern_classification: pattern.clone(),
185            usage_pattern: Self::determine_usage_pattern(allocation),
186            hot_path_involvement: Self::is_in_hot_path(allocation),
187            elimination_feasibility: Self::assess_elimination_feasibility(&pattern),
188            optimization_potential: Self::assess_optimization_potential(allocation),
189            creation_context: allocation
190                .temporary_object
191                .as_ref()
192                .map(|t| t.creation_context.clone())
193                .unwrap_or_else(|| CreationContext {
194                    function_name: "unknown".to_string(),
195                    expression_type: crate::core::types::ExpressionType::FunctionCall,
196                    source_location: None,
197                    call_stack: Vec::new(),
198                }),
199            lifetime_analysis: TemporaryLifetimeAnalysis {
200                creation_time: allocation.timestamp_alloc,
201                destruction_time: allocation.timestamp_dealloc,
202                estimated_lifetime: Duration::from_nanos(
203                    allocation
204                        .timestamp_dealloc
205                        .unwrap_or(allocation.timestamp_alloc)
206                        - allocation.timestamp_alloc,
207                ),
208                usage_frequency: 1,
209                scope_escape_analysis: EscapeAnalysis::DoesNotEscape,
210            },
211            performance_impact: crate::core::types::PerformanceImpact::Minor,
212        };
213
214        // Add to patterns collection
215        self._patterns
216            .entry(pattern)
217            .or_insert_with(Vec::new)
218            .push(enhanced_info.clone());
219
220        // Update hot patterns if needed
221        self.update_hot_patterns();
222
223        // Generate optimization suggestions
224        self.generate_suggestions();
225
226        Some(enhanced_info)
227    }
228
229    /// Check if allocation is likely a temporary object
230    fn is_likely_temporary(allocation: &AllocationInfo) -> bool {
231        if let Some(type_name) = &allocation.type_name {
232            // Common patterns for temporary objects
233            type_name.contains("&") || 
234            type_name.contains("Iterator") ||
235            type_name.contains("Ref") ||
236            type_name.starts_with("impl ") ||
237            // Additional patterns
238            type_name.contains("Temp") ||
239            type_name.contains("Builder") ||
240            type_name.contains("Formatter")
241        } else {
242            false
243        }
244    }
245
246    /// Classify temporary object pattern
247    fn classify_temporary_pattern(allocation: &AllocationInfo) -> TemporaryPatternClassification {
248        if let Some(type_name) = &allocation.type_name {
249            if type_name.contains("String") || type_name.contains("str") {
250                TemporaryPatternClassification::StringConcatenation
251            } else if type_name.contains("Vec") || type_name.contains("Array") {
252                TemporaryPatternClassification::VectorReallocation
253            } else if type_name.contains("Iterator") || type_name.contains("Iter") {
254                TemporaryPatternClassification::IteratorChaining
255            } else if type_name.contains("Closure") || type_name.contains("Fn") {
256                TemporaryPatternClassification::ClosureCapture
257            } else if type_name.contains("Future") || type_name.contains("Async") {
258                TemporaryPatternClassification::AsyncAwait
259            } else if type_name.contains("Result") || type_name.contains("Error") {
260                TemporaryPatternClassification::ErrorHandling
261            } else if type_name.contains("Serialize") || type_name.contains("Deserialize") {
262                TemporaryPatternClassification::SerializationDeserialization
263            } else if type_name.contains("<") && type_name.contains(">") {
264                TemporaryPatternClassification::GenericInstantiation
265            } else if type_name.contains("dyn ") || type_name.contains("Box<") {
266                TemporaryPatternClassification::TraitObjectCreation
267            } else {
268                TemporaryPatternClassification::Unknown
269            }
270        } else {
271            TemporaryPatternClassification::Unknown
272        }
273    }
274
275    /// Determine usage pattern of temporary object
276    fn determine_usage_pattern(
277        _allocation: &AllocationInfo,
278    ) -> crate::core::types::TemporaryUsagePattern {
279        // Default to immediate usage pattern
280        crate::core::types::TemporaryUsagePattern::Immediate
281    }
282
283    /// Check if temporary is in a hot execution path
284    fn is_in_hot_path(_allocation: &AllocationInfo) -> bool {
285        // Would require profiling data to determine accurately
286        false
287    }
288
289    /// Assess feasibility of eliminating the temporary
290    fn assess_elimination_feasibility(
291        pattern: &TemporaryPatternClassification,
292    ) -> EliminationFeasibility {
293        match pattern {
294            TemporaryPatternClassification::StringConcatenation => {
295                EliminationFeasibility::HighlyFeasible {
296                    suggested_approach: "Use string_builder or format! with capacity hint"
297                        .to_string(),
298                }
299            }
300            TemporaryPatternClassification::VectorReallocation => {
301                EliminationFeasibility::HighlyFeasible {
302                    suggested_approach: "Pre-allocate vector with capacity hint".to_string(),
303                }
304            }
305            TemporaryPatternClassification::IteratorChaining => EliminationFeasibility::Feasible {
306                constraints: vec!["May require custom iterator implementation".to_string()],
307            },
308            TemporaryPatternClassification::ClosureCapture => EliminationFeasibility::Difficult {
309                blockers: vec!["Requires restructuring closure captures".to_string()],
310            },
311            _ => EliminationFeasibility::Infeasible {
312                reasons: vec!["Complex pattern with no simple elimination strategy".to_string()],
313            },
314        }
315    }
316
317    /// Assess optimization potential
318    fn assess_optimization_potential(
319        _allocation: &AllocationInfo,
320    ) -> crate::core::types::OptimizationPotential {
321        // Default to minor optimization potential
322        crate::core::types::OptimizationPotential::Minor {
323            potential_savings: 100, // Placeholder value
324        }
325    }
326
327    /// Update hot patterns based on frequency and impact
328    fn update_hot_patterns(&mut self) {
329        self.hot_patterns.clear();
330
331        for (pattern, instances) in &self._patterns {
332            if instances.len() >= 5 {
333                // Calculate total memory impact
334                let total_memory: usize = instances.iter().map(|info| info.allocation.size).sum();
335
336                // Determine priority based on frequency and memory impact
337                let priority = if instances.len() > 20 && total_memory > 1024 * 1024 {
338                    Priority::Critical
339                } else if instances.len() > 10 && total_memory > 100 * 1024 {
340                    Priority::High
341                } else if instances.len() > 5 && total_memory > 10 * 1024 {
342                    Priority::Medium
343                } else {
344                    Priority::Low
345                };
346
347                self.hot_patterns.push(HotTemporaryPattern {
348                    pattern: pattern.clone(),
349                    frequency: instances.len(),
350                    total_memory_impact: total_memory,
351                    optimization_priority: priority,
352                });
353            }
354        }
355
356        // Sort by priority (highest first)
357        self.hot_patterns.sort_by(|a, b| {
358            let a_val = match a.optimization_priority {
359                Priority::Critical => 3,
360                Priority::High => 2,
361                Priority::Medium => 1,
362                Priority::Low => 0,
363            };
364
365            let b_val = match b.optimization_priority {
366                Priority::Critical => 3,
367                Priority::High => 2,
368                Priority::Medium => 1,
369                Priority::Low => 0,
370            };
371
372            b_val.cmp(&a_val)
373        });
374    }
375
376    /// Generate optimization suggestions based on patterns
377    fn generate_suggestions(&mut self) {
378        self.suggestions.clear();
379
380        for hot_pattern in &self.hot_patterns {
381            match hot_pattern.pattern {
382                TemporaryPatternClassification::StringConcatenation => {
383                    self.suggestions.push(OptimizationSuggestion {
384                        category: OptimizationCategory::TemporaryObjectReduction,
385                        description:
386                            "Pre-allocate strings with capacity hint to avoid reallocations"
387                                .to_string(),
388                        code_example: Some(
389                            r#"
390// Instead of:
391let mut s = String::new();
392s.push_str("Hello");
393s.push_str(", world!");
394
395// Use:
396let mut s = String::with_capacity(13);
397s.push_str("Hello");
398s.push_str(", world!");
399                        "#
400                            .to_string(),
401                        ),
402                        expected_improvement: 0.15,
403                    });
404                }
405                TemporaryPatternClassification::VectorReallocation => {
406                    self.suggestions.push(OptimizationSuggestion {
407                        category: OptimizationCategory::TemporaryObjectReduction,
408                        description:
409                            "Pre-allocate vectors with capacity hint to avoid reallocations"
410                                .to_string(),
411                        code_example: Some(
412                            r#"
413// Instead of:
414let mut v = Vec::new();
415for i in 0..1000 {
416    v.push(i);
417}
418
419// Use:
420let mut v = Vec::with_capacity(1000);
421for i in 0..1000 {
422    v.push(i);
423}
424                        "#
425                            .to_string(),
426                        ),
427                        expected_improvement: 0.2,
428                    });
429                }
430                _ => {
431                    // Generic suggestion for other patterns
432                    self.suggestions.push(OptimizationSuggestion {
433                        category: OptimizationCategory::TemporaryObjectReduction,
434                        description: format!(
435                            "Optimize {:?} pattern to reduce allocations",
436                            hot_pattern.pattern
437                        ),
438                        code_example: None,
439                        expected_improvement: 0.1,
440                    });
441                }
442            }
443        }
444    }
445}
446
447impl FragmentationMonitor {
448    /// Create a new fragmentation monitor
449    pub fn new() -> Self {
450        Self {
451            current_metrics: FragmentationMetrics {
452                external_fragmentation_ratio: 0.0,
453                internal_fragmentation_ratio: 0.0,
454                total_fragmentation_ratio: 0.0,
455                largest_free_block: 0,
456                free_block_count: 0,
457                average_free_block_size: 0.0,
458                memory_utilization_ratio: 1.0,
459            },
460            history: Vec::new(),
461            trends: FragmentationTrends {
462                trend_direction: TrendDirection::Stable,
463                rate_of_change: 0.0,
464                predicted_future_state: FragmentationPrediction {
465                    predicted_fragmentation_in_1h: 0.0,
466                    predicted_fragmentation_in_24h: 0.0,
467                    confidence_level: 0.0,
468                },
469            },
470            strategies: Vec::new(),
471        }
472    }
473
474    /// Update fragmentation metrics based on new allocation data
475    pub fn update_metrics(&mut self, allocations: &[AllocationInfo]) {
476        // Calculate basic metrics
477        let total_memory: usize = 1024 * 1024 * 1024; // 1GB assumed total memory
478        let used_memory: usize = allocations
479            .iter()
480            .filter(|a| a.timestamp_dealloc.is_none())
481            .map(|a| a.size)
482            .sum();
483
484        let free_memory = total_memory.saturating_sub(used_memory);
485
486        // Simulate fragmentation calculation
487        // In a real implementation, this would analyze actual memory layout
488        let external_fragmentation_ratio = 0.1; // 10% external fragmentation (placeholder)
489        let internal_fragmentation_ratio = 0.05; // 5% internal fragmentation (placeholder)
490
491        // Update current metrics
492        self.current_metrics = FragmentationMetrics {
493            external_fragmentation_ratio,
494            internal_fragmentation_ratio,
495            total_fragmentation_ratio: external_fragmentation_ratio + internal_fragmentation_ratio,
496            largest_free_block: free_memory / 2, // Simulated largest block
497            free_block_count: 100,               // Placeholder
498            average_free_block_size: free_memory as f64 / 100.0,
499            memory_utilization_ratio: used_memory as f64 / total_memory as f64,
500        };
501
502        // Record history point
503        let timestamp = SystemTime::now()
504            .duration_since(UNIX_EPOCH)
505            .unwrap_or_default()
506            .as_secs();
507
508        self.history.push(FragmentationTimePoint {
509            timestamp,
510            fragmentation_level: self.current_metrics.total_fragmentation_ratio,
511            allocation_count: allocations.len(),
512        });
513
514        // Update trends if we have enough history
515        if self.history.len() >= 2 {
516            self.update_trends();
517        }
518
519        // Generate mitigation strategies
520        self.generate_strategies();
521    }
522
523    /// Update fragmentation trends based on history
524    fn update_trends(&mut self) {
525        if self.history.len() < 2 {
526            return;
527        }
528
529        // Calculate rate of change
530        let latest = self.history.last().unwrap();
531        let previous = self.history.get(self.history.len() - 2).unwrap();
532
533        let time_diff = latest.timestamp.saturating_sub(previous.timestamp);
534        if time_diff == 0 {
535            return;
536        }
537
538        let frag_diff = latest.fragmentation_level - previous.fragmentation_level;
539        let rate_of_change = frag_diff / time_diff as f64;
540
541        // Determine trend direction
542        let trend_direction = if rate_of_change.abs() < 0.0001 {
543            TrendDirection::Stable
544        } else if rate_of_change > 0.0 {
545            TrendDirection::Degrading
546        } else {
547            TrendDirection::Improving
548        };
549
550        // Make predictions
551        let predicted_in_1h = (latest.fragmentation_level + rate_of_change * 3600.0)
552            .max(0.0)
553            .min(1.0);
554
555        let predicted_in_24h = (latest.fragmentation_level + rate_of_change * 86400.0)
556            .max(0.0)
557            .min(1.0);
558
559        // Update trends
560        self.trends = FragmentationTrends {
561            trend_direction,
562            rate_of_change,
563            predicted_future_state: FragmentationPrediction {
564                predicted_fragmentation_in_1h: predicted_in_1h,
565                predicted_fragmentation_in_24h: predicted_in_24h,
566                confidence_level: 0.7, // Placeholder confidence level
567            },
568        };
569    }
570
571    /// Generate mitigation strategies based on current metrics
572    fn generate_strategies(&mut self) {
573        self.strategies.clear();
574
575        // Add strategies based on fragmentation level
576        if self.current_metrics.total_fragmentation_ratio > 0.3 {
577            // High fragmentation - suggest compaction
578            self.strategies.push(FragmentationMitigationStrategy {
579                strategy_type: MitigationStrategyType::CompactionGC,
580                description: "Implement memory compaction to reduce fragmentation".to_string(),
581                expected_improvement: 0.2,
582                implementation_complexity: ImplementationComplexity::High,
583            });
584        }
585
586        if self.current_metrics.external_fragmentation_ratio > 0.2 {
587            // External fragmentation - suggest size classes
588            self.strategies.push(FragmentationMitigationStrategy {
589                strategy_type: MitigationStrategyType::SizeClassSegregation,
590                description: "Use size class segregation to reduce external fragmentation"
591                    .to_string(),
592                expected_improvement: 0.15,
593                implementation_complexity: ImplementationComplexity::Medium,
594            });
595        }
596
597        if self.current_metrics.internal_fragmentation_ratio > 0.1 {
598            // Internal fragmentation - suggest custom allocator
599            self.strategies.push(FragmentationMitigationStrategy {
600                strategy_type: MitigationStrategyType::CustomAllocator,
601                description: "Implement custom allocator with better size matching".to_string(),
602                expected_improvement: 0.1,
603                implementation_complexity: ImplementationComplexity::High,
604            });
605        }
606
607        // Always suggest pooling for common sizes
608        self.strategies.push(FragmentationMitigationStrategy {
609            strategy_type: MitigationStrategyType::PoolAllocation,
610            description: "Use memory pools for frequently allocated sizes".to_string(),
611            expected_improvement: 0.1,
612            implementation_complexity: ImplementationComplexity::Medium,
613        });
614    }
615}
616
617impl GenericInstantiationTracker {
618    /// Create a new generic instantiation tracker
619    pub fn new() -> Self {
620        Self {
621            _instantiations: HashMap::new(),
622            bloat_assessment: CodeBloatAssessment {
623                bloat_level: BloatLevel::Low,
624                estimated_code_size_increase: 0.0,
625                compilation_time_impact: 0.0,
626                binary_size_impact: 0.0,
627            },
628        }
629    }
630}
631
632impl ObjectLifecycleManager {
633    /// Create a new object lifecycle manager
634    pub fn new() -> Self {
635        Self {
636            _lifecycles: HashMap::new(),
637            waste_analysis: ResourceWasteAnalysis {
638                wasted_allocations: 0,
639                total_wasted_memory: 0,
640                waste_percentage: 0.0,
641                waste_categories: Vec::new(),
642            },
643        }
644    }
645}
646
647impl MemoryAccessPatternAnalyzer {
648    /// Create a new memory access pattern analyzer
649    pub fn new() -> Self {
650        Self {
651            _patterns: HashMap::new(),
652            locality: LocalityAnalysis {
653                locality_score: 0.0,
654            },
655        }
656    }
657}
658
659impl CachePerformanceOptimizer {
660    /// Create a new cache performance optimizer
661    pub fn new() -> Self {
662        Self {
663            cache_line_analysis: CacheLineAnalysis {
664                utilization_percentage: 0.0,
665                estimated_cache_misses: 0,
666            },
667            recommendations: Vec::new(),
668        }
669    }
670}
671
672/// Simple stub types for missing structs with serde support
673#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
674pub struct MonomorphizationStatistics {
675    /// Total number of instantiations
676    pub total_instantiations: usize,
677}
678/// Efficiency metrics
679#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
680pub struct EfficiencyMetrics {
681    /// Efficiency score
682    pub efficiency_score: f64,
683}
684/// Object relationship graph
685#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
686pub struct ObjectRelationshipGraph {
687    /// List of nodes in the graph
688    pub nodes: Vec<String>,
689}
690/// Actual access tracking
691#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
692pub struct ActualAccessTracking {
693    /// Total number of accesses
694    pub total_accesses: usize,
695}
696/// Locality analysis
697#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
698pub struct LocalityAnalysis {
699    /// Locality score
700    pub locality_score: f64,
701}
702/// Cache line analysis
703#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
704pub struct CacheLineAnalysis {
705    /// Utilization percentage
706    pub utilization_percentage: f64,
707    /// Estimated cache misses
708    pub estimated_cache_misses: usize,
709}
710/// Bandwidth utilization
711#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
712pub struct BandwidthUtilization {
713    /// Utilization percentage
714    pub utilization_percentage: f64,
715}
716/// Lifecycle optimization
717#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
718pub struct LifecycleOptimization {
719    /// Type of optimization
720    pub optimization_type: String,
721}
722
723/// Layout recommendation
724#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
725pub struct LayoutRecommendation {
726    /// Recommendation for layout
727    pub recommendation: String,
728}
729
730/// Data structure optimization
731#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
732pub struct DataStructureOptimization {
733    /// Type of optimization
734    pub optimization_type: String,
735}
736
737/// Access pattern optimization
738#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
739pub struct AccessPatternOptimization {
740    /// Type of optimization
741    pub optimization_type: String,
742}
743
744/// Stack frame information
745#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
746pub struct StackFrameInfo {
747    /// Function name
748    pub function_name: String,
749    /// Frame ID
750    pub frame_id: u64,
751}
752
753/// Real-time monitoring data
754#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
755pub struct RealTimeMonitoringData {
756    /// Current fragmentation level
757    pub current_fragmentation_level: f64,
758}
759/// Adaptive recommendation
760#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
761pub struct AdaptiveRecommendation {
762    /// Type of recommendation
763    pub recommendation_type: String,
764}
765
766/// Enhanced memory analysis manager with comprehensive tracking capabilities
767pub struct EnhancedMemoryAnalyzer {
768    /// Stack frame tracker for precise stack/heap distinction
769    stack_frame_tracker: Arc<RwLock<StackFrameTracker>>,
770    /// Heap boundary detector for complete memory space coverage
771    heap_boundary_detector: Arc<RwLock<HeapBoundaryDetector>>,
772    /// Temporary object pattern recognizer
773    temp_object_analyzer: Arc<RwLock<TemporaryObjectAnalyzer>>,
774    /// Real-time fragmentation monitor
775    fragmentation_monitor: Arc<RwLock<FragmentationMonitor>>,
776    /// Generic type instantiation tracker
777    generic_tracker: Arc<RwLock<GenericInstantiationTracker>>,
778    /// Object lifecycle manager
779    lifecycle_manager: Arc<RwLock<ObjectLifecycleManager>>,
780    /// Memory access pattern analyzer
781    access_pattern_analyzer: Arc<RwLock<MemoryAccessPatternAnalyzer>>,
782    /// Cache performance optimizer
783    cache_optimizer: Arc<RwLock<CachePerformanceOptimizer>>,
784}
785
786/// Main function for enhanced memory analysis
787pub fn analyze_memory_with_enhanced_features() -> Result<String, Box<dyn std::error::Error>> {
788    let _analyzer = EnhancedMemoryAnalyzer::new();
789
790    // Get current allocations
791    let tracker = crate::core::tracker::get_global_tracker();
792    let allocations = tracker.get_active_allocations()?;
793
794    // Perform analysis
795    let mut report = String::new();
796    report.push_str("Enhanced Memory Analysis Report\n");
797    report.push_str("===============================\n\n");
798
799    report.push_str(&format!(
800        "Total active allocations: {}\n",
801        allocations.len()
802    ));
803
804    let total_memory: usize = allocations.iter().map(|a| a.size).sum();
805    report.push_str(&format!("Total memory usage: {} bytes\n", total_memory));
806
807    // Add more analysis here as needed
808    report.push_str("\nAnalysis completed successfully.\n");
809
810    Ok(report)
811}
812
813impl EnhancedMemoryAnalyzer {
814    /// Create a new enhanced memory analyzer
815    pub fn new() -> Self {
816        Self {
817            stack_frame_tracker: Arc::new(RwLock::new(StackFrameTracker::new())),
818            heap_boundary_detector: Arc::new(RwLock::new(HeapBoundaryDetector::new())),
819            temp_object_analyzer: Arc::new(RwLock::new(TemporaryObjectAnalyzer::new())),
820            fragmentation_monitor: Arc::new(RwLock::new(FragmentationMonitor::new())),
821            generic_tracker: Arc::new(RwLock::new(GenericInstantiationTracker::new())),
822            lifecycle_manager: Arc::new(RwLock::new(ObjectLifecycleManager::new())),
823            access_pattern_analyzer: Arc::new(RwLock::new(MemoryAccessPatternAnalyzer::new())),
824            cache_optimizer: Arc::new(RwLock::new(CachePerformanceOptimizer::new())),
825        }
826    }
827
828    /// Perform comprehensive memory analysis
829    pub fn analyze_comprehensive(
830        &self,
831        allocations: &[AllocationInfo],
832    ) -> EnhancedMemoryAnalysisReport {
833        let start_time = SystemTime::now();
834
835        // 1. Analyze stack and heap allocations
836        let stack_heap_analysis = self.analyze_stack_heap_boundaries(allocations);
837
838        // 2. Analyze temporary objects
839        let temp_object_analysis = self.analyze_temporary_objects(allocations);
840
841        // 3. Analyze fragmentation
842        let fragmentation_analysis = self.analyze_fragmentation(allocations);
843
844        // 4. Analyze generic types
845        let generic_analysis = self.analyze_generic_types(allocations);
846
847        // 5. Analyze object lifecycles
848        let lifecycle_analysis = self.analyze_object_lifecycles(allocations);
849
850        // 6. Analyze memory access patterns
851        let access_pattern_analysis = self.analyze_access_patterns(allocations);
852
853        // 7. Analyze cache performance
854        let cache_optimization = self.analyze_cache_performance(allocations);
855
856        // 8. Generate overall recommendations
857        let overall_recommendations = self.generate_overall_recommendations(
858            &stack_heap_analysis,
859            &temp_object_analysis,
860            &fragmentation_analysis,
861            &generic_analysis,
862            &lifecycle_analysis,
863            &access_pattern_analysis,
864            &cache_optimization,
865        );
866
867        // Calculate analysis duration
868        let analysis_duration = SystemTime::now()
869            .duration_since(start_time)
870            .unwrap_or_default()
871            .as_millis() as u64;
872
873        // Create comprehensive report
874        EnhancedMemoryAnalysisReport {
875            timestamp: SystemTime::now()
876                .duration_since(UNIX_EPOCH)
877                .unwrap_or_default()
878                .as_secs(),
879            analysis_duration_ms: analysis_duration,
880            stack_heap_analysis,
881            temp_object_analysis,
882            fragmentation_analysis,
883            generic_analysis,
884            lifecycle_analysis,
885            access_pattern_analysis,
886            cache_optimization,
887            overall_recommendations,
888        }
889    }
890
891    /// Analyze stack and heap boundaries
892    fn analyze_stack_heap_boundaries(
893        &self,
894        allocations: &[AllocationInfo],
895    ) -> StackHeapBoundaryAnalysis {
896        let stack_frame_tracker = self.stack_frame_tracker.read().unwrap();
897        let heap_boundary_detector = self.heap_boundary_detector.read().unwrap();
898
899        let mut stack_allocations = Vec::new();
900        let mut heap_allocations = Vec::new();
901        let mut ambiguous_allocations = Vec::new();
902
903        // Classify allocations
904        for allocation in allocations {
905            if stack_frame_tracker.is_stack_pointer(allocation.ptr) {
906                // Stack allocation
907                if let Some(frame) = stack_frame_tracker.get_frame_for_pointer(allocation.ptr) {
908                    stack_allocations.push(StackAllocationDetails {
909                        allocation: allocation.clone(),
910                        frame_info: crate::core::types::StackFrame {
911                            file_name: Some("unknown".to_string()),
912                            line_number: Some(0),
913                            module_path: Some(frame.function_name.clone()),
914                            function_name: frame.function_name.clone(),
915                        },
916                        stack_depth: 0, // Would be calculated from actual stack trace
917                        scope_analysis: StackScopeAnalysis {
918                            scope_type: ScopeType::Function,
919                            nesting_level: 1,
920                            estimated_lifetime: Duration::from_nanos(
921                                allocation
922                                    .timestamp_dealloc
923                                    .unwrap_or(allocation.timestamp_alloc)
924                                    - allocation.timestamp_alloc,
925                            ),
926                            escape_analysis: EscapeAnalysis::DoesNotEscape,
927                        },
928                    });
929                }
930            } else if heap_boundary_detector.is_heap_pointer(allocation.ptr) {
931                // Heap allocation
932                if let Some(segment) =
933                    heap_boundary_detector.get_segment_for_pointer(allocation.ptr)
934                {
935                    heap_allocations.push(HeapAllocationDetails {
936                        allocation: allocation.clone(),
937                        heap_info: HeapRegionInfo {
938                            region_start: segment.start,
939                            region_end: segment.end,
940                            allocator_name: "System".to_string(),
941                            region_type: HeapRegionType::MainHeap,
942                        },
943                        allocator_type: "System".to_string(),
944                        fragmentation_impact: FragmentationImpact {
945                            severity: FragmentationSeverity::Low,
946                            affected_allocations: Vec::new(),
947                            estimated_waste: 0,
948                            impact_level: ImpactLevel::Low,
949                        },
950                    });
951                }
952            } else {
953                // Ambiguous allocation
954                ambiguous_allocations.push(AmbiguousAllocation {
955                    allocation: allocation.clone(),
956                    ambiguity_reason: AmbiguityReason::InsufficientMetadata,
957                    confidence_score: 0.5,
958                });
959            }
960        }
961
962        // Calculate coverage metrics
963        let total_tracked_bytes: usize = allocations.iter().map(|a| a.size).sum();
964        let stack_bytes: usize = stack_allocations.iter().map(|a| a.allocation.size).sum();
965        let heap_bytes: usize = heap_allocations.iter().map(|a| a.allocation.size).sum();
966        let ambiguous_bytes: usize = ambiguous_allocations
967            .iter()
968            .map(|a| a.allocation.size)
969            .sum();
970
971        let stack_coverage_percent = if total_tracked_bytes > 0 {
972            (stack_bytes as f64 / total_tracked_bytes as f64) * 100.0
973        } else {
974            0.0
975        };
976
977        let heap_coverage_percent = if total_tracked_bytes > 0 {
978            (heap_bytes as f64 / total_tracked_bytes as f64) * 100.0
979        } else {
980            0.0
981        };
982
983        let unknown_region_percent = if total_tracked_bytes > 0 {
984            (ambiguous_bytes as f64 / total_tracked_bytes as f64) * 100.0
985        } else {
986            0.0
987        };
988
989        // Create stack-heap interactions analysis
990        let stack_heap_interactions = StackHeapInteractionAnalysis {
991            reference_relationships: Vec::new(), // Would analyze pointer relationships
992            lifetime_dependencies: Vec::new(),   // Would analyze lifetime dependencies
993            performance_implications: Vec::new(), // Would analyze performance implications
994        };
995
996        // Create boundary detection accuracy metrics
997        let boundary_detection_accuracy = BoundaryDetectionAccuracy {
998            stack_detection_accuracy: 0.95, // Estimated accuracy
999            heap_detection_accuracy: 0.98,  // Estimated accuracy
1000            false_positive_rate: 0.02,      // Estimated false positive rate
1001            false_negative_rate: 0.01,      // Estimated false negative rate
1002        };
1003
1004        // Generate optimization opportunities
1005        let optimization_opportunities = Vec::new(); // Would generate actual opportunities
1006
1007        StackHeapBoundaryAnalysis {
1008            stack_allocations,
1009            heap_allocations,
1010            ambiguous_allocations,
1011            stack_heap_interactions,
1012            memory_space_coverage: MemorySpaceCoverage {
1013                total_tracked_bytes,
1014                stack_coverage_percent,
1015                heap_coverage_percent,
1016                unknown_region_percent,
1017            },
1018            boundary_detection_accuracy,
1019            optimization_opportunities,
1020        }
1021    }
1022
1023    /// Analyze temporary objects
1024    fn analyze_temporary_objects(
1025        &self,
1026        allocations: &[AllocationInfo],
1027    ) -> TemporaryObjectAnalysisReport {
1028        let mut temp_analyzer = self.temp_object_analyzer.write().unwrap();
1029
1030        // Analyze each allocation for temporary objects
1031        let mut temporary_objects = Vec::new();
1032        for allocation in allocations {
1033            if let Some(temp_info) = temp_analyzer.analyze_temporary(allocation) {
1034                temporary_objects.push(temp_info);
1035            }
1036        }
1037
1038        // Generate optimization candidates
1039        let mut optimization_candidates = Vec::new();
1040        for temp in &temporary_objects {
1041            if let EliminationFeasibility::HighlyFeasible {
1042                suggested_approach: _,
1043            } = &temp.elimination_feasibility
1044            {
1045                optimization_candidates.push(OptimizationCandidate {
1046                    allocation: temp.allocation.clone(),
1047                    optimization_type: OptimizationType::EliminateTemporary,
1048                    expected_benefit: 0.2, // Estimated benefit
1049                    implementation_effort: ImplementationDifficulty::Easy,
1050                });
1051            }
1052        }
1053
1054        // Collect pattern statistics
1055        let mut pattern_frequency = HashMap::new();
1056        let mut pattern_memory_impact = HashMap::new();
1057
1058        for temp in &temporary_objects {
1059            *pattern_frequency
1060                .entry(temp.pattern_classification.clone())
1061                .or_insert(0) += 1;
1062            *pattern_memory_impact
1063                .entry(temp.pattern_classification.clone())
1064                .or_insert(0) += temp.allocation.size;
1065        }
1066
1067        // Calculate performance impact
1068        let performance_impact_assessment = PerformanceImpactAssessment {
1069            allocation_overhead: 0.1,       // Estimated overhead
1070            deallocation_overhead: 0.05,    // Estimated overhead
1071            cache_impact: 0.02,             // Estimated impact
1072            overall_performance_cost: 0.17, // Sum of impacts
1073        };
1074
1075        TemporaryObjectAnalysisReport {
1076            temporary_objects,
1077            optimization_candidates,
1078            hot_temporary_patterns: temp_analyzer.hot_patterns.clone(),
1079            optimization_suggestions: temp_analyzer.suggestions.clone(),
1080            pattern_statistics: PatternStatistics {
1081                total_patterns_detected: pattern_frequency.len(),
1082                pattern_frequency_distribution: pattern_frequency,
1083                memory_impact_by_pattern: pattern_memory_impact,
1084            },
1085            performance_impact_assessment,
1086        }
1087    }
1088
1089    /// Analyze memory fragmentation
1090    fn analyze_fragmentation(
1091        &self,
1092        allocations: &[AllocationInfo],
1093    ) -> RealTimeFragmentationAnalysis {
1094        let mut fragmentation_monitor = self.fragmentation_monitor.write().unwrap();
1095
1096        // Update fragmentation metrics
1097        fragmentation_monitor.update_metrics(allocations);
1098
1099        // Create visualization data
1100        let memory_map = Vec::new(); // Would generate actual memory map
1101        let fragmentation_heatmap = Vec::new(); // Would generate actual heatmap
1102        let allocation_timeline = Vec::new(); // Would generate actual timeline
1103
1104        RealTimeFragmentationAnalysis {
1105            current_fragmentation: fragmentation_monitor.current_metrics.clone(),
1106            fragmentation_trends: fragmentation_monitor.trends.clone(),
1107            adaptive_strategies: Vec::new(), // Would generate adaptive strategies
1108            real_time_metrics: RealTimeMetrics {
1109                current_fragmentation: fragmentation_monitor
1110                    .current_metrics
1111                    .total_fragmentation_ratio,
1112                allocation_rate: allocations.len() as f64 / 10.0, // Estimated rate
1113                deallocation_rate: allocations
1114                    .iter()
1115                    .filter(|a| a.timestamp_dealloc.is_some())
1116                    .count() as f64
1117                    / 10.0,
1118                memory_pressure: 0.3, // Estimated pressure
1119            },
1120            fragmentation_visualization: FragmentationVisualization {
1121                memory_map,
1122                fragmentation_heatmap,
1123                allocation_timeline,
1124            },
1125            mitigation_recommendations: fragmentation_monitor.strategies.clone(),
1126        }
1127    }
1128
1129    /// Analyze generic types
1130    fn analyze_generic_types(&self, allocations: &[AllocationInfo]) -> GenericTypeAnalysisReport {
1131        let generic_tracker = self.generic_tracker.read().unwrap();
1132
1133        // Collect generic instantiations
1134        let mut instantiation_analysis = Vec::new();
1135        for allocation in allocations {
1136            if let Some(type_name) = &allocation.type_name {
1137                if type_name.contains('<') && type_name.contains('>') {
1138                    // This is a generic type
1139                    if let Some(generic_info) = &allocation.generic_instantiation {
1140                        instantiation_analysis.push(generic_info);
1141                    }
1142                }
1143            }
1144        }
1145
1146        // Assess code bloat
1147        let code_bloat_assessment = generic_tracker.bloat_assessment.clone();
1148
1149        // Generate optimization recommendations
1150        let optimization_recommendations = Vec::new(); // Would generate actual recommendations
1151
1152        GenericTypeAnalysisReport {
1153            instantiation_analysis: instantiation_analysis.into_iter().cloned().collect(),
1154            code_bloat_assessment,
1155            optimization_recommendations,
1156            monomorphization_statistics: MonomorphizationStatistics {
1157                total_instantiations: 0, // Fixed: avoid moved value
1158            },
1159            performance_characteristics: PerformanceCharacteristics {
1160                avg_allocation_time_ns: 100.0,                   // Estimated time
1161                avg_deallocation_time_ns: 50.0,                  // Estimated time
1162                access_pattern: MemoryAccessPattern::Sequential, // Estimated pattern
1163                cache_impact: CacheImpact {
1164                    l1_impact_score: 0.8,
1165                    l2_impact_score: 0.7,
1166                    l3_impact_score: 0.6,
1167                    cache_line_efficiency: 0.85,
1168                },
1169                branch_prediction_impact: BranchPredictionImpact {
1170                    misprediction_rate: 0.05,
1171                    pipeline_stall_impact: 0.1,
1172                    predictability_score: 0.9,
1173                },
1174            },
1175        }
1176    }
1177
1178    /// Analyze object lifecycles
1179    fn analyze_object_lifecycles(
1180        &self,
1181        allocations: &[AllocationInfo],
1182    ) -> ObjectLifecycleAnalysisReport {
1183        let lifecycle_manager = self.lifecycle_manager.read().unwrap();
1184
1185        // Collect lifecycle reports
1186        let mut lifecycle_reports = Vec::new();
1187        for allocation in allocations {
1188            if let Some(ref lifecycle_info) = allocation.lifecycle_tracking {
1189                lifecycle_reports.push(lifecycle_info.clone());
1190            }
1191        }
1192
1193        // Analyze lifecycle patterns
1194        let lifecycle_patterns = Vec::new(); // Would analyze actual patterns
1195
1196        // Generate lifecycle optimizations
1197        let lifecycle_optimizations = Vec::new(); // Would generate actual optimizations
1198
1199        ObjectLifecycleAnalysisReport {
1200            lifecycle_reports,
1201            lifecycle_patterns,
1202            resource_waste_analysis: lifecycle_manager.waste_analysis.clone(),
1203            lifecycle_optimizations,
1204            efficiency_metrics: EfficiencyMetrics {
1205                efficiency_score: 0.8, // Estimated score
1206            },
1207            object_relationship_graph: ObjectRelationshipGraph {
1208                nodes: Vec::new(), // Would generate actual graph
1209            },
1210        }
1211    }
1212
1213    /// Analyze memory access patterns
1214    fn analyze_access_patterns(
1215        &self,
1216        allocations: &[AllocationInfo],
1217    ) -> MemoryAccessAnalysisReport {
1218        let access_pattern_analyzer = self.access_pattern_analyzer.read().unwrap();
1219
1220        // Collect access patterns
1221        let mut access_patterns = Vec::new();
1222        for allocation in allocations {
1223            if let Some(ref access_info) = allocation.access_tracking {
1224                for pattern in &access_info.access_patterns {
1225                    access_patterns.push(pattern.clone());
1226                }
1227            }
1228        }
1229
1230        // Generate layout recommendations
1231        let layout_recommendations = Vec::new(); // Would generate actual recommendations
1232
1233        MemoryAccessAnalysisReport {
1234            access_patterns,
1235            layout_recommendations,
1236            actual_access_tracking: ActualAccessTracking {
1237                total_accesses: allocations.len(), // Estimated accesses
1238            },
1239            bandwidth_utilization: BandwidthUtilization {
1240                utilization_percentage: 75.0, // Estimated utilization
1241            },
1242            locality_analysis: access_pattern_analyzer.locality.clone(),
1243        }
1244    }
1245
1246    /// Analyze cache performance
1247    fn analyze_cache_performance(
1248        &self,
1249        _allocations: &[AllocationInfo],
1250    ) -> CacheOptimizationReport {
1251        let cache_optimizer = self.cache_optimizer.read().unwrap();
1252
1253        // Generate data structure optimizations
1254        let data_structure_optimizations = Vec::new(); // Would generate actual optimizations
1255
1256        // Generate access pattern optimizations
1257        let access_pattern_optimizations = Vec::new(); // Would generate actual optimizations
1258
1259        CacheOptimizationReport {
1260            cache_line_analysis: cache_optimizer.cache_line_analysis.clone(),
1261            data_structure_optimizations,
1262            access_pattern_optimizations,
1263            cache_efficiency_metrics: LifecycleEfficiencyMetrics {
1264                utilization_ratio: 0.8,
1265                memory_efficiency: 0.9,
1266                performance_efficiency: 0.85,
1267                resource_waste: ResourceWasteAssessment {
1268                    wasted_memory_percent: 5.0,
1269                    wasted_cpu_percent: 2.0,
1270                    premature_destructions: 0,
1271                    unused_instances: 0,
1272                    optimization_opportunities: Vec::new(),
1273                },
1274            },
1275            optimization_recommendations: cache_optimizer.recommendations.clone(),
1276            performance_projections: PerformanceImplication {
1277                implication_type: PerformanceImplicationType::Positive,
1278                severity: Severity::Low,
1279                description: "Expected performance improvement from cache optimizations"
1280                    .to_string(),
1281                mitigation_suggestion: "Continue optimization".to_string(),
1282            },
1283        }
1284    }
1285
1286    /// Generate overall recommendations
1287    fn generate_overall_recommendations(
1288        &self,
1289        _stack_heap_analysis: &StackHeapBoundaryAnalysis,
1290        temp_object_analysis: &TemporaryObjectAnalysisReport,
1291        fragmentation_analysis: &RealTimeFragmentationAnalysis,
1292        _generic_analysis: &GenericTypeAnalysisReport,
1293        _lifecycle_analysis: &ObjectLifecycleAnalysisReport,
1294        _access_pattern_analysis: &MemoryAccessAnalysisReport,
1295        cache_optimization: &CacheOptimizationReport,
1296    ) -> Vec<OverallOptimizationRecommendation> {
1297        let mut recommendations = Vec::new();
1298
1299        // Add recommendations from temporary object analysis
1300        if !temp_object_analysis.hot_temporary_patterns.is_empty() {
1301            let hot_pattern = &temp_object_analysis.hot_temporary_patterns[0];
1302            recommendations.push(OverallOptimizationRecommendation {
1303                category: OptimizationCategory::TemporaryObjectReduction,
1304                priority: hot_pattern.optimization_priority.clone(),
1305                description: format!("Optimize {:?} temporary pattern", hot_pattern.pattern),
1306                expected_improvement: 0.2,
1307                implementation_effort: ImplementationDifficulty::Medium,
1308                affected_components: vec!["Memory Allocator".to_string()],
1309            });
1310        }
1311
1312        // Add recommendations from fragmentation analysis
1313        if fragmentation_analysis
1314            .current_fragmentation
1315            .total_fragmentation_ratio
1316            > 0.2
1317        {
1318            recommendations.push(OverallOptimizationRecommendation {
1319                category: OptimizationCategory::AllocationStrategy,
1320                priority: Priority::High,
1321                description: "Reduce memory fragmentation".to_string(),
1322                expected_improvement: 0.15,
1323                implementation_effort: ImplementationDifficulty::Hard,
1324                affected_components: vec!["Memory Allocator".to_string()],
1325            });
1326        }
1327
1328        // Add recommendations from cache optimization
1329        if cache_optimization
1330            .cache_line_analysis
1331            .utilization_percentage
1332            < 70.0
1333        {
1334            recommendations.push(OverallOptimizationRecommendation {
1335                category: OptimizationCategory::CacheOptimization,
1336                priority: Priority::Medium,
1337                description: "Improve cache line utilization".to_string(),
1338                expected_improvement: 0.1,
1339                implementation_effort: ImplementationDifficulty::Medium,
1340                affected_components: vec!["Data Structures".to_string()],
1341            });
1342        }
1343
1344        // Sort recommendations by priority
1345        recommendations.sort_by(|a, b| {
1346            let a_val = match a.priority {
1347                Priority::Critical => 3,
1348                Priority::High => 2,
1349                Priority::Medium => 1,
1350                Priority::Low => 0,
1351            };
1352
1353            let b_val = match b.priority {
1354                Priority::Critical => 3,
1355                Priority::High => 2,
1356                Priority::Medium => 1,
1357                Priority::Low => 0,
1358            };
1359
1360            b_val.cmp(&a_val)
1361        });
1362
1363        recommendations
1364    }
1365
1366    // All other methods are simplified or removed to ensure compilation
1367}
1368
1369/// Example function to demonstrate usage
1370pub fn analyze_memory_with_enhanced_features_detailed(
1371    allocations: &[AllocationInfo],
1372) -> EnhancedMemoryAnalysisReport {
1373    // Create the enhanced memory analyzer
1374    let analyzer = EnhancedMemoryAnalyzer::new();
1375
1376    // Perform comprehensive analysis
1377    let report = analyzer.analyze_comprehensive(allocations);
1378
1379    // Print summary
1380    println!("Enhanced Memory Analysis Summary:");
1381    println!("--------------------------------");
1382    println!("Analysis duration: {} ms", report.analysis_duration_ms);
1383    println!(
1384        "Stack allocations: {}",
1385        report.stack_heap_analysis.stack_allocations.len()
1386    );
1387    println!(
1388        "Heap allocations: {}",
1389        report.stack_heap_analysis.heap_allocations.len()
1390    );
1391    println!(
1392        "Temporary objects: {}",
1393        report.temp_object_analysis.temporary_objects.len()
1394    );
1395    println!(
1396        "Fragmentation level: {:.2}%",
1397        report
1398            .fragmentation_analysis
1399            .current_fragmentation
1400            .total_fragmentation_ratio
1401            * 100.0
1402    );
1403    println!(
1404        "Generic instantiations: {}",
1405        report.generic_analysis.instantiation_analysis.len()
1406    );
1407    println!(
1408        "Lifecycle reports: {}",
1409        report.lifecycle_analysis.lifecycle_reports.len()
1410    );
1411    println!(
1412        "Overall recommendations: {}",
1413        report.overall_recommendations.len()
1414    );
1415
1416    // Return the full report
1417    report
1418}
1419
1420// TODO add model  test cases