1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
//! A concurrent insert only hash map.
//!
//! This crate implements a "memo map" which is in many ways similar to a
//! [`HashMap`] with some crucial differences:
//!
//! * Unlike a regular hash map, a memo map is thread safe and synchronized.
//! * Once a value has been placed in the memo map it can be neither removed nor replaced.
//! * Retrieving a value from a memo map returns a plain old reference.
//!
//! Together these purposes allow one to use this type of structure to
//! implement something similar to lazy loading in places where the API
//! has been constrained to references before.
//!
//! For this to work the value placed in the [`MemoMap`] has to implement
//! [`StableDeref`]. If the value you want to place there does not implement
//! it you can generally wrap it in a [`Box`].
//!
//! ```
//! use memo_map::MemoMap;
//!
//! let memo = MemoMap::new();
//! let one = memo.get_or_insert(&1, || "one".to_string());
//! let one2 = memo.get_or_insert(&1, || "not one".to_string());
//! assert_eq!(one, "one");
//! assert_eq!(one2, "one");
//! ```
//!
//! # Notes on Iteration
//!
//! Because the memo map internally uses a mutex it needs to be held during
//! iteration. This is potentially dangerous as it means you can easily
//! deadlock yourself when trying to use the memo map while iterating. The
//! iteration functionality thus has to be used with great care.
use std::borrow::Borrow;
use std::collections::hash_map::{Entry, RandomState};
use std::collections::HashMap;
use std::convert::Infallible;
use std::hash::{BuildHasher, Hash};
use std::mem::{transmute, ManuallyDrop};
use std::sync::{Mutex, MutexGuard};
use stable_deref_trait::StableDeref;
macro_rules! lock {
($mutex:expr) => {
match $mutex.lock() {
Ok(guard) => guard,
Err(poisoned) => poisoned.into_inner(),
}
};
}
/// An insert only, thread safe hash map to memoize values.
#[derive(Debug)]
pub struct MemoMap<K, V, S = RandomState> {
inner: Mutex<HashMap<K, V, S>>,
}
impl<K: Clone, V: Clone, S: Clone> Clone for MemoMap<K, V, S> {
fn clone(&self) -> Self {
Self {
inner: Mutex::new(lock!(self.inner).clone()),
}
}
}
impl<K, V, S: Default> Default for MemoMap<K, V, S> {
fn default() -> Self {
MemoMap {
inner: Mutex::new(HashMap::default()),
}
}
}
impl<K, V> MemoMap<K, V, RandomState> {
/// Creates an empty `MemoMap`.
pub fn new() -> MemoMap<K, V, RandomState> {
MemoMap {
inner: Mutex::default(),
}
}
}
impl<K, V, S> MemoMap<K, V, S> {
/// Creates an empty `MemoMap` which will use the given hash builder to hash
/// keys.
pub fn with_hasher(hash_builder: S) -> MemoMap<K, V, S> {
MemoMap {
inner: Mutex::new(HashMap::with_hasher(hash_builder)),
}
}
}
impl<K, V, S> MemoMap<K, V, S>
where
K: Eq + Hash,
V: StableDeref,
S: BuildHasher,
{
/// Inserts a value into the memo map.
///
/// This inserts a value for a specific key into the memo map. If the
/// key already exists, this method does nothing and instead returns `false`.
/// Otherwise the value is inserted and `true` is returned. It's generally
/// recommended to instead use [`get_or_insert`](Self::get_or_insert) or
/// it's sibling [`get_or_try_insert`](Self::get_or_try_insert).
pub fn insert(&self, key: K, value: V) -> bool {
let mut inner = lock!(self.inner);
match inner.entry(key) {
Entry::Occupied(_) => false,
Entry::Vacant(vacant) => {
vacant.insert(value);
true
}
}
}
/// Returns true if the map contains a value for the specified key.
///
/// The key may be any borrowed form of the map's key type, but [`Hash`] and
/// [`Eq`] on the borrowed form must match those for the key type.
pub fn contains_key<Q>(&self, key: &Q) -> bool
where
Q: Hash + Eq + ?Sized,
K: Borrow<Q>,
{
lock!(self.inner).contains_key(key)
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but [`Hash`] and
/// [`Eq`] on the borrowed form must match those for the key type.
pub fn get<Q>(&self, key: &Q) -> Option<&V>
where
Q: Hash + Eq + ?Sized,
K: Borrow<Q>,
{
let inner = lock!(self.inner);
let value = inner.get(key)?;
Some(unsafe { transmute::<_, _>(value) })
}
/// Returns a reference to the value corresponding to the key or inserts.
///
/// This is the preferred way to work with a memo map: if the value has not
/// been in the map yet the creator function is invoked to create the value,
/// otherwise the already stored value is returned. The creator function itself
/// can be falliable and the error is passed through.
///
/// If the creator is infallible, [`get_or_insert`](Self::get_or_insert) can be used.
pub fn get_or_try_insert<Q, F, E>(&self, key: &Q, creator: F) -> Result<&V, E>
where
Q: Hash + Eq + ToOwned<Owned = K> + ?Sized,
K: Borrow<Q>,
F: FnOnce() -> Result<V, E>,
{
let mut inner = lock!(self.inner);
let value = if let Some(value) = inner.get(key) {
value
} else {
inner.insert(key.to_owned(), creator()?);
inner.get(key).unwrap()
};
Ok(unsafe { transmute::<_, _>(value) })
}
/// Returns a reference to the value corresponding to the key or inserts.
///
/// This is the preferred way to work with a memo map: if the value has not
/// been in the map yet the creator function is invoked to create the value,
/// otherwise the already stored value is returned.
///
/// If the creator is fallible, [`get_or_try_insert`](Self::get_or_try_insert) can be used.
///
/// # Example
///
/// ```
/// # use memo_map::MemoMap;
/// let memo = MemoMap::new();
///
/// // first time inserts
/// let value = memo.get_or_insert("key", || "23");
/// assert_eq!(*value, "23");
///
/// // second time returns old value
/// let value = memo.get_or_insert("key", || "24");
/// assert_eq!(*value, "23");
/// ```
pub fn get_or_insert<Q, F>(&self, key: &Q, creator: F) -> &V
where
Q: Hash + Eq + ToOwned<Owned = K> + ?Sized,
K: Borrow<Q>,
F: FnOnce() -> V,
{
self.get_or_try_insert::<_, _, Infallible>(key, || Ok(creator()))
.unwrap()
}
/// Returns the number of items in the map.
///
/// # Example
///
/// ```
/// # use memo_map::MemoMap;
/// let memo = MemoMap::new();
///
/// assert_eq!(memo.len(), 0);
/// memo.insert(1, "a");
/// memo.insert(2, "b");
/// memo.insert(2, "not b");
/// assert_eq!(memo.len(), 2);
/// ```
pub fn len(&self) -> usize {
lock!(self.inner).len()
}
/// Returns `true` if the memo map contains no items.
pub fn is_empty(&self) -> bool {
lock!(self.inner).is_empty()
}
/// An iterator visiting all key-value pairs in arbitrary order. The
/// iterator element type is `(&'a K, &'a V)`.
///
/// Important note: during iteration the map is locked! This means that you
/// must not perform modifications to the map or you will run into deadlocks.
pub fn iter(&self) -> Iter<'_, K, V, S> {
let guard = lock!(self.inner);
let iter = guard.iter();
Iter {
iter: unsafe { transmute::<_, _>(iter) },
guard: ManuallyDrop::new(guard),
}
}
/// An iterator visiting all keys in arbitrary order. The iterator element
/// type is `&'a K`.
pub fn keys(&self) -> Keys<'_, K, V, S> {
Keys { iter: self.iter() }
}
}
/// An iterator over the items of a [`MemoMap`].
///
/// This struct is created by the [`iter`](MemoMap::iter) method on [`MemoMap`].
/// See its documentation for more information.
pub struct Iter<'a, K, V, S> {
guard: ManuallyDrop<MutexGuard<'a, HashMap<K, V, S>>>,
iter: std::collections::hash_map::Iter<'a, K, V>,
}
impl<'a, K, V, S> Drop for Iter<'a, K, V, S> {
fn drop(&mut self) {
unsafe {
ManuallyDrop::drop(&mut self.guard);
}
}
}
impl<'a, K, V, S> Iterator for Iter<'a, K, V, S> {
type Item = (&'a K, &'a V);
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(k, v)| (k, v))
}
}
/// An iterator over the keys of a [`MemoMap`].
///
/// This struct is created by the [`keys`](MemoMap::keys) method on [`MemoMap`].
/// See its documentation for more information.
pub struct Keys<'a, K, V, S> {
iter: Iter<'a, K, V, S>,
}
impl<'a, K, V, S> Iterator for Keys<'a, K, V, S> {
type Item = &'a K;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(k, _)| k)
}
}
#[test]
fn test_insert() {
let memo = MemoMap::new();
assert!(memo.insert(23u32, Box::new(1u32)));
assert!(!memo.insert(23u32, Box::new(2u32)));
assert_eq!(memo.get(&23u32).cloned(), Some(Box::new(1)));
}
#[test]
fn test_iter() {
let memo = MemoMap::new();
memo.insert(1, "one");
memo.insert(2, "two");
memo.insert(3, "three");
let mut values = memo.iter().map(|(k, v)| (*k, *v)).collect::<Vec<_>>();
values.sort();
assert_eq!(values, vec![(1, "one"), (2, "two"), (3, "three")]);
}
#[test]
fn test_keys() {
let memo = MemoMap::new();
memo.insert(1, "one");
memo.insert(2, "two");
memo.insert(3, "three");
let mut values = memo.keys().map(|k| *k).collect::<Vec<_>>();
values.sort();
assert_eq!(values, vec![1, 2, 3]);
}
#[test]
fn test_contains() {
let memo = MemoMap::new();
memo.insert(1, "one");
assert!(memo.contains_key(&1));
assert!(!memo.contains_key(&2));
}