1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
//! This essentially reimplements the code at:
//! which is an internal implementation of the code at:
//! <https://github.com/rust-lang/rust/blob/master/library/std/src/process.rs>
//! <https://github.com/rust-lang/rust/blob/master/library/std/src/sys/unix/process/process_unix.rs>
//! <https://github.com/rust-lang/rust/blob/master/library/std/src/sys/unix/process/process_common.rs>
//! for external use to provide a very similar interface to process::Command for in-memory executables
use std::{
collections::BTreeMap,
ffi::{CStr, CString, OsStr, OsString},
io::{Error, ErrorKind, Result},
mem::MaybeUninit,
os::unix::prelude::{OsStrExt, OsStringExt},
path::Path,
ptr::null_mut,
};
use libc::{pid_t, sigemptyset, signal};
use nix::{
sys::memfd::{memfd_create, MemFdCreateFlag},
unistd::{close, fexecve, write},
};
use crate::{
anon_pipe::anon_pipe,
child::Child,
command_env::CommandEnv,
cvt::{cvt, cvt_nz, cvt_r},
output::Output,
process::{ExitStatus, Process},
stdio::{ChildPipes, Stdio, StdioPipes},
};
/// This is the main struct used to create an in-memory only executable. Wherever possible, it
/// is intended to be a drop-in replacement for the standard library's `process::Command` struct.
///
/// # Examples
///
/// This example is the "motivating case" for this library. It shows how to execute a binary
/// entirely from memory, without writing it to disk. This is useful for executing binaries
/// sneakily, or (the real reason) for bundling executables that are a pain to set up and
/// compile, but whose static versions are very portable. Here's a "sneaky" example:
///
/// ```no_compile
/// use memfd_exec::{MemFdExecutable, Stdio};
///
/// // You can include the entirety of a binary (for example, nc)
/// let nc_binary= include_bytes!("/usr/bin/nc-static");
///
///
/// // The first argument is just the name for the program, you can pick anything but
/// // if the program expects a specific argv[0] value, use that.
/// // The second argument is the binary code to execute.
/// let mut cmd = MemFdExecutable::new("nc", nc_binary)
/// // We can pass arbitrary args just like with Command. Here, we'll execute nc
/// // to listen on a port and run a shell for connections, entirely from memory.
/// .arg("-l")
/// .arg("1234")
/// .arg("-e")
/// .arg("/bin/sh")
/// // And we can get piped stdin/stdout just like with Command
/// .stdout(Stdio::piped())
/// // Spawn starts the child process and gives us a handle back
/// .spawn()
/// .expect("failed to execute process");
///
/// // Then, we can wait for the program to exit.
/// cmd.wait();
/// ```
pub struct MemFdExecutable {
/// The contents of the ELF executable to run. This content can be included in the file
/// using the `include_bytes!()` macro, or you can do fancy things like read it in from
/// a socket.
code: Vec<u8>,
/// The name of the program, this value is the argv\[0\] argument to the binary when
/// executed. If the program expects something specific here, that value should be
/// used, otherwise any name will do
program: CString,
/// The arguments to the program, excluding the program name
args: Vec<CString>,
/// The whole argv array, including the program name
argv: Argv,
/// The environment variables to set for the program
env: CommandEnv,
/// The current working directory to set for the program
cwd: Option<CString>,
/// The program's stdin handle
pub stdin: Option<Stdio>,
/// The program's stdout handle
pub stdout: Option<Stdio>,
/// The program's stderr handle
pub stderr: Option<Stdio>,
/// Holdover from Command, whether there was a NUL in the arguments or not
saw_nul: bool,
}
struct Argv(Vec<CString>);
unsafe impl Send for Argv {}
unsafe impl Sync for Argv {}
fn os2c(s: &OsStr, saw_nul: &mut bool) -> CString {
CString::new(s.as_bytes()).unwrap_or_else(|_e| {
*saw_nul = true;
CString::new("<string-with-nul>").unwrap()
})
}
fn construct_envp(env: BTreeMap<OsString, OsString>, saw_nul: &mut bool) -> Vec<CString> {
let mut result = Vec::with_capacity(env.len());
for (mut k, v) in env {
// Reserve additional space for '=' and null terminator
k.reserve_exact(v.len() + 2);
k.push("=");
k.push(&v);
// Add the new entry into the array
if let Ok(item) = CString::new(k.into_vec()) {
result.push(item);
} else {
*saw_nul = true;
}
}
result
}
impl MemFdExecutable {
/// Create a new MemFdExecutable with the given name and code. The name is the name of the
/// program, and is used as the argv\[0\] argument to the program. The code is the binary
/// code to execute (usually, the entire contents of an ELF file).
///
/// # Examples
///
/// You can run code that is included directly in your executable with `include_bytes!()`:
///
/// ```no_compile
/// use memfd_exec::MemFdExecutable;
///
/// let code = include_bytes!("/usr/bin/nc-static");
///
/// let mut cmd = MemFdExecutable::new("nc", code)
/// .arg("-l")
/// .arg("1234")
/// .arg("-e")
/// .arg("/bin/sh")
/// .status()
/// .expect("failed to execute process");
/// ```
///
pub fn new<S: AsRef<OsStr>>(name: S, code: Vec<u8>) -> Self {
let mut saw_nul = false;
let name = os2c(name.as_ref(), &mut saw_nul);
Self {
code,
program: name.clone(),
args: vec![name.clone()],
argv: Argv(vec![name]),
env: Default::default(),
cwd: None,
stdin: None,
stdout: None,
stderr: None,
saw_nul,
}
}
/// Add an argument to the program. This is equivalent to `Command::arg()`.
pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Self {
let arg = os2c(arg.as_ref(), &mut self.saw_nul);
self.argv.0.push(arg.clone());
self.args.push(arg);
self
}
/// Add multiple arguments to the program. This is equivalent to `Command::args()`.
pub fn args<I, S>(&mut self, args: I) -> &mut Self
where
I: IntoIterator<Item = S>,
S: AsRef<OsStr>,
{
for arg in args {
self.arg(arg.as_ref());
}
self
}
/// Add an environment variable to the program. This is equivalent to `Command::env()`.
pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Self
where
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
self.env_mut().set(key.as_ref(), val.as_ref());
self
}
/// Add multiple environment variables to the program. This is equivalent to `Command::envs()`.
pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Self
where
I: IntoIterator<Item = (K, V)>,
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
for (ref key, ref val) in vars {
self.env_mut().set(key.as_ref(), val.as_ref());
}
self
}
/// Remove an environment variable from the program. This is equivalent to `Command::env_remove()`.
pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Self {
self.env_mut().remove(key.as_ref());
self
}
/// Clear all environment variables from the program. This is equivalent to `Command::env_clear()`.
pub fn env_clear(&mut self) -> &mut Self {
self.env_mut().clear();
self
}
/// Set the current working directory for the program. This is equivalent to `Command::current_dir()`.
pub fn cwd<P: AsRef<Path>>(&mut self, dir: P) -> &mut Self {
self.cwd = Some(os2c(dir.as_ref().as_ref(), &mut self.saw_nul));
self
}
/// Set the stdin handle for the program. This is equivalent to `Command::stdin()`. The
/// default is to inherit the current process's stdin. Note that this `Stdio` is not the
/// same exactly as `process::Stdio`, but it is feature-equivalent.
///
/// # Examples
///
/// This example creates a `cat` process that will read in the contents passed to its
/// stdin handle and write them to a null stdout (i.e. it will be discarded). The same
/// methodology can be used to read from stderr/stdout.
///
/// ```no_run
/// use std::thread::spawn;
/// use std::io::Write;
///
/// use memfd_exec::{MemFdExecutable, Stdio};
///
/// let mut cat_cmd = MemFdExecutable::new("cat", include_bytes!("/bin/cat").to_vec())
/// .stdin(Stdio::piped())
/// .stdout(Stdio::null())
/// .spawn()
/// .expect("failed to spawn cat");
///
/// let mut cat_stdin = cat_cmd.stdin.take().expect("failed to open stdin");
/// spawn(move || {
/// cat_stdin.write_all(b"hello world").expect("failed to write to stdin");
/// });
/// ```
pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Self {
self.stdin = Some(cfg.into());
self
}
/// Set the stdout handle for the program. This is equivalent to `Command::stdout()`. The
///
/// # Arguments
/// * `cfg` - The configuration for the stdout handle. This will usually be one of the following:
/// * `Stdio::inherit()` - Inherit the current process's stdout handle
/// * `Stdio::piped()` - Create a pipe to the child process's stdout. This can be read
/// * `Stdio::null()` - Discard all output to stdout
///
/// # Examples
///
/// This example creates a `cat` process that will read in the contents passed to its stdin handle
/// and read them from its stdout handle. The same methodology can be used to read from stderr/stdout.
///
/// ```
/// use std::thread::spawn;
/// use std::fs::read;
/// use std::io::{Read, Write};
///
/// use memfd_exec::{MemFdExecutable, Stdio};
///
/// let mut cat = MemFdExecutable::new("cat", read("/bin/cat").unwrap())
/// .stdin(Stdio::piped())
/// .stdout(Stdio::piped())
/// .spawn()
/// .expect("failed to spawn cat");
///
/// let mut cat_stdin = cat.stdin.take().expect("failed to open stdin");
/// let mut cat_stdout = cat.stdout.take().expect("failed to open stdout");
///
/// spawn(move || {
/// cat_stdin.write_all(b"hello world").expect("failed to write to stdin");
/// });
///
/// let mut output = Vec::new();
/// cat_stdout.read_to_end(&mut output).expect("failed to read from stdout");
/// assert_eq!(output, b"hello world");
/// cat.wait().expect("failed to wait on cat");
/// ```
pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Self {
self.stdout = Some(cfg.into());
self
}
/// Set the stderr handle for the program. This is equivalent to `Command::stderr()`. The
///
/// # Arguments
/// * `cfg` - The configuration for the stderr handle. This will usually be one of the following:
/// * `Stdio::inherit()` - Inherit the current process's stderr handle
/// * `Stdio::piped()` - Create a pipe to the child process's stderr. This can be read
/// * `Stdio::null()` - Discard all output to stderr
pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Self {
self.stderr = Some(cfg.into());
self
}
/// Spawn the program as a child process. This is equivalent to `Command::spawn()`.
pub fn spawn(&mut self) -> Result<Child> {
let default = Stdio::Inherit;
let needs_stdin = true;
const CLOEXEC_MSG_FOOTER: [u8; 4] = *b"NOEX";
let envp = self.capture_env();
if self.saw_nul() {
// TODO: Need err?
}
let (ours, theirs) = self.setup_io(default, needs_stdin)?;
let (input, output) = anon_pipe()?;
// Whatever happens after the fork is almost for sure going to touch or
// look at the environment in one way or another (PATH in `execvp` or
// accessing the `environ` pointer ourselves). Make sure no other thread
// is accessing the environment when we do the fork itself.
//
// Note that as soon as we're done with the fork there's no need to hold
// a lock any more because the parent won't do anything and the child is
// in its own process. Thus the parent drops the lock guard while the child
// forgets it to avoid unlocking it on a new thread, which would be invalid.
// TODO: Yeah....I had to remove the env lock. Whoops! Don't multithread env with this
// you insane person
let pid = unsafe { self.do_fork()? };
if pid == 0 {
drop(input);
let Err(err) = (unsafe { self.do_exec(theirs, envp) }) else { unreachable!("..."); };
panic!("failed to exec: {}", err);
}
drop(output);
// Safety: We obtained the pidfd from calling `clone3` with
// `CLONE_PIDFD` so it's valid an otherwise unowned.
let mut p = unsafe { Process::new(pid) };
let mut bytes = [0; 8];
// loop to handle EINTR
loop {
match input.read(&mut bytes) {
Ok(0) => return Ok(Child::new(p, ours)),
Ok(8) => {
let (errno, footer) = bytes.split_at(4);
assert_eq!(
CLOEXEC_MSG_FOOTER, footer,
"Validation on the CLOEXEC pipe failed: {:?}",
bytes
);
let errno = i32::from_be_bytes(errno.try_into().unwrap());
assert!(p.wait().is_ok(), "wait() should either return Ok or panic");
return Err(Error::from_raw_os_error(errno));
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => {
assert!(p.wait().is_ok(), "wait() should either return Ok or panic");
panic!("the CLOEXEC pipe failed: {e:?}")
}
Ok(..) => {
// pipe I/O up to PIPE_BUF bytes should be atomic
assert!(p.wait().is_ok(), "wait() should either return Ok or panic");
panic!("short read on the CLOEXEC pipe")
}
}
}
}
/// Spawn the program as a child process and wait for it to complete, obtaining the
/// output and exit status. This is equivalent to `Command::output()`.
pub fn output(&mut self) -> Result<Output> {
self.spawn()?.wait_with_output()
}
/// Spawn the program as a child process and wait for it to complete, obtaining the
/// exit status. This is equivalent to `Command::status()`.
pub fn status(&mut self) -> Result<ExitStatus> {
self.spawn()?.wait()
}
/// Set the program name (argv\[0\]) to a new value.
///
/// # Arguments
/// * `name` - The new name for the program. This will be used as the first argument
pub fn set_program(&mut self, program: &OsStr) {
let arg = os2c(program, &mut self.saw_nul);
self.argv.0[0] = arg.clone();
self.args[0] = arg;
}
fn env_mut(&mut self) -> &mut CommandEnv {
&mut self.env
}
fn setup_io(&self, default: Stdio, needs_stdin: bool) -> Result<(StdioPipes, ChildPipes)> {
let null = Stdio::Null;
let default_stdin = if needs_stdin { &default } else { &null };
let stdin = self.stdin.as_ref().unwrap_or(default_stdin);
let stdout = self.stdout.as_ref().unwrap_or(&default);
let stderr = self.stderr.as_ref().unwrap_or(&default);
let (their_stdin, our_stdin) = stdin.to_child_stdio(true)?;
let (their_stdout, our_stdout) = stdout.to_child_stdio(false)?;
let (their_stderr, our_stderr) = stderr.to_child_stdio(false)?;
let ours = StdioPipes {
stdin: our_stdin,
stdout: our_stdout,
stderr: our_stderr,
};
let theirs = ChildPipes {
stdin: their_stdin,
stdout: their_stdout,
stderr: their_stderr,
};
Ok((ours, theirs))
}
fn saw_nul(&self) -> bool {
self.saw_nul
}
/// Get the current working directory for the child process.
pub fn get_cwd(&self) -> &Option<CString> {
&self.cwd
}
unsafe fn do_fork(&mut self) -> Result<pid_t> {
cvt(libc::fork())
}
fn capture_env(&mut self) -> Option<Vec<CString>> {
let maybe_env = self.env.capture_if_changed();
maybe_env.map(|env| construct_envp(env, &mut self.saw_nul))
}
/// Execute the command as a new process, replacing the current process.
///
/// This function will not return.
///
/// # Arguments
/// * `default` - The default stdio to use if the child process does not specify.
pub fn exec(&mut self, default: Stdio) -> Error {
let envp = self.capture_env();
if self.saw_nul() {
return Error::new(ErrorKind::InvalidInput, "nul byte found in provided data");
}
match self.setup_io(default, true) {
Ok((_, theirs)) => unsafe {
let Err(e) = self.do_exec(theirs, envp) else { unreachable!("..."); };
e
},
Err(e) => e,
}
}
/// Get the program name to use for the child process as a C string.
pub fn get_program_cstr(&self) -> &CStr {
&*self.program
}
/// Get the program argv to use for the child process.
pub fn get_argv(&self) -> &Vec<CString> {
&self.argv.0
}
/// Get whether PATH has been affected by changes to the environment variables
/// of this command.
pub fn env_saw_path(&self) -> bool {
self.env.have_changed_path()
}
/// Get whether the program (argv\[0\]) is a path, as opposed to a name.
pub fn program_is_path(&self) -> bool {
self.program.to_bytes().contains(&b'/')
}
unsafe fn do_exec(&mut self, stdio: ChildPipes, maybe_envp: Option<Vec<CString>>) -> Result<!> {
if let Some(fd) = stdio.stdin.fd() {
cvt_r(|| libc::dup2(fd, libc::STDIN_FILENO))?;
}
if let Some(fd) = stdio.stdout.fd() {
cvt_r(|| libc::dup2(fd, libc::STDOUT_FILENO))?;
}
if let Some(fd) = stdio.stderr.fd() {
cvt_r(|| libc::dup2(fd, libc::STDERR_FILENO))?;
}
if let Some(ref cwd) = *self.get_cwd() {
cvt(libc::chdir(cwd.as_ptr()))?;
}
{
// Reset signal handling so the child process starts in a
// standardized state. libstd ignores SIGPIPE, and signal-handling
// libraries often set a mask. Child processes inherit ignored
// signals and the signal mask from their parent, but most
// UNIX programs do not reset these things on their own, so we
// need to clean things up now to avoid confusing the program
// we're about to run.
let mut set = MaybeUninit::<libc::sigset_t>::uninit();
cvt(sigemptyset(set.as_mut_ptr()))?;
cvt_nz(libc::pthread_sigmask(
libc::SIG_SETMASK,
set.as_ptr(),
null_mut(),
))?;
{
let ret = signal(libc::SIGPIPE, libc::SIG_DFL);
if ret == libc::SIG_ERR {
return Err(Error::last_os_error());
}
}
}
// TODO: Env resetting isn't implemented because we're using fexecve not execvp
// Map the executable last, because it's a huge hit to memory if something else failed
let mfd = memfd_create(
CString::new("rust_exec").unwrap().as_c_str(),
MemFdCreateFlag::MFD_CLOEXEC,
)
.unwrap();
if let Ok(n) = write(mfd, &self.code[..]) {
if n != self.code.len() {
return Err(Error::new(
ErrorKind::BrokenPipe,
"Failed to write to memfd",
));
}
} else {
return Err(Error::last_os_error());
}
let argv = self
.get_argv()
.iter()
.map(|s| s.as_c_str())
.collect::<Vec<_>>();
let maybe_envp = maybe_envp.unwrap_or_default();
let envp = maybe_envp.iter().map(|s| s.as_c_str()).collect::<Vec<_>>();
if let Err(err) = fexecve(mfd, &argv, &envp) {
// If we failed to exec, we need to close the memfd
// so that the child process doesn't leak it
let _ = close(mfd);
return Err(Error::new(ErrorKind::BrokenPipe, err));
}
Err(Error::last_os_error())
}
}