1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#![warn(missing_docs)]
use indxvec::{here,Vecops,Printing,printing::{GR,UN}};
#[derive(Default)]
pub struct Med {
pub median: f64,
pub lq: f64,
pub uq: f64,
pub mad: f64
}
impl std::fmt::Display for Med {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
f,
"median:\n\tLower Q: {}\n\tMedian: {}\n\tUpper Q: {}\n\tMad: {GR}±{}{UN}",
self.lq.gr(),
self.median.gr(),
self.uq.gr(),
self.mad
)
}
}
pub fn naive_median<T>(s:&mut [T]) -> f64
where T: Copy+PartialOrd,f64:From<T> {
let n = s.len();
if n == 0 { panic!("{} empty vector!",here!()); };
if n == 1 { return f64::from(s[0]); };
if n == 2 { return (f64::from(s[0])+f64::from(s[1]))/2.0; };
s.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
let mid = s.len()/2;
if (n & 1) == 0 { (f64::from(s[mid-1]) + f64::from(s[mid])) / 2.0 }
else { f64::from(s[mid]) }
}
fn next(s:&[f64],x:f64) -> (i64,i64,f64) {
let mut recipsum = 0_f64;
let (mut left,mut right) = (0_i64,0_i64);
for &si in s {
if si < x { left += 1; recipsum += 1./(x-si); continue; };
if si > x { right += 1; recipsum += 1./(si-x);
}
}
let balance = right-left;
( balance.abs(),s.len() as i64-left-right,(balance as f64)/recipsum )
}
fn nearestlt(set:&[f64],x:f64) -> f64 {
let mut best = f64::MIN;
for &s in set {
if s > x { continue };
if s > best { best = s };
}
best
}
fn nearestgt(set:&[f64],x:f64) -> f64 {
let mut best = f64::MAX;
for &s in set {
if s < x { continue };
if s < best { best = s };
}
best
}
pub fn w_median<T>(set:&[T]) -> f64
where T: Copy,f64:From<T> {
let n = set.len();
match n {
1 => f64::from(set[0]),
2 => f64::from(set[0])+f64::from(set[1])/2.0,
_ => {
let s = set.tof64();
let sumx:f64 = s.iter().sum();
let mean = sumx/(n as f64);
if (n & 1) == 0 { even_w_median(&s,mean) }
else { odd_w_median(&s,mean) }}
}
}
fn odd_w_median(s:&[f64],m:f64) -> f64 {
let mut gm = m;
let mut lastsig = 0_i64;
loop {
let (sigs,eqs,dx) = next(s,gm);
if sigs < eqs { return gm };
gm += dx;
if (sigs < lastsig) && (sigs >= 3) {
lastsig = sigs;
continue;
};
if dx > 0. { gm = nearestgt(s, gm); }
else if dx < 0. { gm = nearestlt(s, gm); };
if sigs < 3 { return gm; };
lastsig = sigs;
}
}
fn even_w_median(s:&[f64],m:f64) -> f64 {
let mut gm = m;
let mut lastsig = 0_i64;
loop {
let (sigs,eqs,dx) = next(s,gm);
if sigs < eqs { return gm };
gm += dx;
if (sigs < lastsig) && (sigs >= 2) {
lastsig = sigs;
continue;
};
if sigs < 2 { return (nearestgt(s, gm) + nearestlt(s, gm))/2.; };
lastsig = sigs;
if dx > 0. { gm = nearestgt(s, gm); }
else if dx < 0. { gm = nearestlt(s, gm); };
}
}
fn part<T>(s:&[T],pivot:f64) -> (Vec<T>,Vec<T>) where T:Copy, f64:From<T> {
let mut ltset = Vec::new();
let mut gtset = Vec::new();
for &f in s {
if f64::from(f) < pivot { ltset.push(f); } else { gtset.push(f); };
};
(ltset,gtset)
}
pub fn r_median<T>(set:&[T]) -> f64
where T: Copy+PartialOrd,f64:From<T> {
let n = set.len();
let (min,max) = set.minmaxt();
let pivot = (f64::from(min)+f64::from(max))/2.;
if (n & 1) == 0 { r_med_even(set,n/2,pivot,f64::from(min),f64::from(max)) }
else { r_med_odd(set,n/2+1,pivot,f64::from(min),f64::from(max)) }
}
fn r_med_odd<T>(set:&[T],need:usize,pivot:f64,setmin:f64,setmax:f64) -> f64
where T:PartialOrd+Copy,f64:From<T> {
if need == 1 { return setmin };
let n = set.len();
if need == n { return setmax };
let (ltset,gtset) = part(set,pivot);
let ltlen = ltset.len();
let gtlen = gtset.len();
match need {
1 => f64::from(ltset.mint()),
x if x < ltlen => {
let max = f64::from(ltset.maxt());
if setmin == max { return f64::from(ltset[0]) };
let newpivot = setmin + (need as f64)*(max-setmin)/(ltlen as f64);
r_med_odd(<set, need, newpivot,setmin,max)
},
x if x == ltlen => f64::from(ltset.maxt()),
x if x == ltlen+1 => f64::from(gtset.mint()),
x if x == n => f64::from(gtset.maxt()),
_ => {
let newneed = need - ltlen;
let min = f64::from(gtset.mint());
if min == setmax { return f64::from(gtset[0]) };
let newpivot = min + (setmax-min)*(newneed as f64)/(gtlen as f64);
r_med_odd(>set, newneed, newpivot,min,setmax)
}
}
}
fn r_med_even<T>(set:&[T],need:usize,pivot:f64,setmin:f64,setmax:f64) -> f64
where T:PartialOrd+Copy,f64:From<T> {
let n = set.len();
let (ltset,gtset) = part(set,pivot);
let ltlen = ltset.len();
let gtlen = gtset.len();
match need {
x if x < ltlen => {
let max = f64::from(ltset.maxt());
if setmin == max { return f64::from(ltset[0]) };
let newpivot = setmin + (need as f64)*(max-setmin)/(ltlen as f64);
r_med_even(<set, need, newpivot,setmin,max)
},
x if x == ltlen => (f64::from(ltset.maxt())+f64::from(gtset.mint()))/2.,
x if x == n => f64::from(gtset.maxt()),
_ => {
let newneed = need - ltlen;
let min = f64::from(gtset.mint());
if min == setmax { return f64::from(gtset[0]) };
let newpivot = min + (newneed as f64)*(setmax-min)/(gtlen as f64);
r_med_even(>set, newneed, newpivot,min,setmax)
}
}
}
pub trait Median {
fn median(&self) -> f64;
fn mad(self,m:f64) -> f64;
fn medinfo(self) -> Med;
}
impl<T> Median for &[T] where T: Copy+PartialOrd,f64:From<T> {
fn median(&self) -> f64 {
let n = self.len();
if n == 0 { panic!("{} empty vector!",here!()) };
if n < 60 { w_median(self)}
else { r_median(self)}
}
fn mad(self,m:f64) -> f64 {
let diffs:Vec<f64> = self.iter().map(|&s| ((f64::from(s)-m).abs())).collect();
diffs.as_slice().median()
}
fn medinfo(self) -> Med {
let mut equals = 0_usize;
let mut posdifs:Vec<f64> = Vec::new();
let mut negdifs:Vec<f64> = Vec::new();
let med = self.median();
for &s in self {
let sf = f64::from(s);
if sf > med { posdifs.push(sf-med) }
else if sf < med { negdifs.push(med-sf) }
else { equals += 1 };
}
if equals > 1 {
let eqhalf = vec!(0.;equals/2);
let eqslice = vec!(0.;equals);
let lq = negdifs.unite_unsorted(&eqhalf).as_slice().median();
let uq = eqhalf.unite_unsorted(&posdifs).as_slice().median();
Med{ median:med,
lq:med-lq,
uq:med+uq,
mad: [negdifs,eqslice,posdifs].concat().as_slice().median()} }
else {
Med { median:med,
lq: med-negdifs.as_slice().median(),
uq: med+posdifs.as_slice().median(),
mad: [negdifs,posdifs].concat().as_slice().median()} }
}
}