mecomp_analysis/
chroma.rs

1//! Chroma feature extraction module.
2//!
3//! Contains functions to compute the chromagram of a song, and
4//! then from this chromagram extract the song's tone and mode
5//! (minor / major).
6extern crate noisy_float;
7
8use crate::Feature;
9
10use super::errors::{AnalysisError, AnalysisResult};
11use super::utils::{Normalize, hz_to_octs_inplace, stft};
12use ndarray::{Array, Array1, Array2, Axis, Order, Zip, arr1, arr2, concatenate, s};
13use ndarray_stats::QuantileExt;
14use ndarray_stats::interpolate::Midpoint;
15use noisy_float::prelude::*;
16
17/**
18 * General object holding the chroma descriptor.
19 *
20 * Current chroma descriptors are interval features (see
21 * <https://speech.di.uoa.gr/ICMC-SMC-2014/images/VOL_2/1461.pdf>).
22 *
23 * Contrary to the other descriptors that can be used with streaming
24 * without consequences, this one performs better if the full song is used at
25 * once.
26 */
27#[derive(Debug, Clone)]
28#[allow(clippy::module_name_repetitions)]
29pub struct ChromaDesc {
30    sample_rate: u32,
31    n_chroma: u32,
32    values_chroma: Array2<f64>,
33}
34
35impl Normalize for ChromaDesc {
36    const MAX_VALUE: Feature = 0.12;
37    const MIN_VALUE: Feature = 0.;
38}
39
40impl ChromaDesc {
41    pub const WINDOW_SIZE: usize = 8192;
42
43    #[must_use]
44    #[inline]
45    pub fn new(sample_rate: u32, n_chroma: u32) -> Self {
46        Self {
47            sample_rate,
48            n_chroma,
49            values_chroma: Array2::zeros((n_chroma as usize, 0)),
50        }
51    }
52
53    /**
54     * Compute and store the chroma of a signal.
55     *
56     * Passing a full song here once instead of streaming smaller parts of the
57     * song will greatly improve accuracy.
58     */
59    #[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
60    #[inline]
61    pub fn do_(&mut self, signal: &[f32]) -> AnalysisResult<()> {
62        let mut stft = stft(signal, Self::WINDOW_SIZE, 2205);
63        let tuning = estimate_tuning(self.sample_rate, &stft, Self::WINDOW_SIZE, 0.01, 12)?;
64        let chroma = chroma_stft(
65            self.sample_rate,
66            &mut stft,
67            Self::WINDOW_SIZE,
68            self.n_chroma,
69            tuning,
70        )?;
71        self.values_chroma = concatenate![Axis(1), self.values_chroma, chroma];
72        Ok(())
73    }
74
75    /**
76     * Get the song's interval features.
77     *
78     * Return the 6 pitch class set categories, as well as the major, minor,
79     * diminished and augmented triads.
80     *
81     * See this paper <https://speech.di.uoa.gr/ICMC-SMC-2014/images/VOL_2/1461.pdf>
82     * for more information ("Timbre-invariant Audio Features for Style Analysis of Classical
83     * Music").
84     */
85    #[inline]
86    pub fn get_value(&mut self) -> Vec<Feature> {
87        #[allow(clippy::cast_possible_truncation)]
88        chroma_interval_features(&self.values_chroma)
89            .mapv(|x| self.normalize(x as Feature))
90            .to_vec()
91    }
92}
93
94// Functions below are Rust versions of python notebooks by AudioLabs Erlang
95// (<https://www.audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html>)
96#[allow(
97    clippy::missing_errors_doc,
98    clippy::missing_panics_doc,
99    clippy::module_name_repetitions
100)]
101#[must_use]
102#[inline]
103pub fn chroma_interval_features(chroma: &Array2<f64>) -> Array1<f64> {
104    let chroma = normalize_feature_sequence(&chroma.mapv(|x| (x * 15.).exp()));
105    let templates = arr2(&[
106        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
107        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
108        [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
109        [0, 0, 1, 0, 0, 0, 0, 1, 1, 0],
110        [0, 0, 0, 1, 0, 0, 1, 0, 0, 1],
111        [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
112        [0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
113        [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
114        [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
115        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
116        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
117        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
118    ]);
119    let interval_feature_matrix = extract_interval_features(&chroma, &templates);
120    interval_feature_matrix.mean_axis(Axis(1)).unwrap()
121}
122
123#[must_use]
124#[inline]
125pub fn extract_interval_features(chroma: &Array2<f64>, templates: &Array2<i32>) -> Array2<f64> {
126    let mut f_intervals: Array2<f64> = Array::zeros((chroma.shape()[1], templates.shape()[1]));
127    for (template, mut f_interval) in templates
128        .axis_iter(Axis(1))
129        .zip(f_intervals.axis_iter_mut(Axis(1)))
130    {
131        for shift in 0..12 {
132            let mut vec: Vec<i32> = template.to_vec();
133            vec.rotate_right(shift);
134            let rolled = arr1(&vec);
135            let power = Zip::from(chroma.t())
136                .and_broadcast(&rolled)
137                .map_collect(|&f, &s| f.powi(s))
138                .map_axis_mut(Axis(1), |x| x.product());
139            f_interval += &power;
140        }
141    }
142    f_intervals.t().to_owned()
143}
144
145#[inline]
146pub fn normalize_feature_sequence(feature: &Array2<f64>) -> Array2<f64> {
147    let mut normalized_sequence = feature.to_owned();
148    for mut column in normalized_sequence.columns_mut() {
149        let sum: f64 = column.iter().copied().map(f64::abs).sum();
150        if sum >= 0.0001 {
151            column /= sum;
152        }
153    }
154
155    normalized_sequence
156}
157
158// All the functions below are more than heavily inspired from
159// librosa"s code: https://github.com/librosa/librosa/blob/main/librosa/feature/spectral.py#L1165
160// chroma(22050, n_fft=5, n_chroma=12)
161//
162// Could be precomputed, but it takes very little time to compute it
163// on the fly compared to the rest of the functions, and we'd lose the
164// possibility to tweak parameters.
165#[allow(
166    clippy::missing_errors_doc,
167    clippy::missing_panics_doc,
168    clippy::module_name_repetitions,
169    clippy::missing_inline_in_public_items
170)]
171pub fn chroma_filter(
172    sample_rate: u32,
173    n_fft: usize,
174    n_chroma: u32,
175    tuning: f64,
176) -> AnalysisResult<Array2<f64>> {
177    let ctroct = 5.0;
178    let octwidth = 2.;
179    let n_chroma_float = f64::from(n_chroma);
180    let n_chroma2 = (n_chroma_float / 2.0).round();
181
182    let frequencies = Array::linspace(0., f64::from(sample_rate), n_fft + 1);
183
184    let mut freq_bins = frequencies;
185    hz_to_octs_inplace(&mut freq_bins, tuning, n_chroma);
186    freq_bins.mapv_inplace(|x| x * n_chroma_float);
187    freq_bins[0] = 1.5f64.mul_add(-n_chroma_float, freq_bins[1]);
188
189    let mut binwidth_bins = Array::ones(freq_bins.raw_dim());
190    binwidth_bins.slice_mut(s![0..freq_bins.len() - 1]).assign(
191        &(&freq_bins.slice(s![1..]) - &freq_bins.slice(s![..-1]))
192            .mapv(|x| if x <= 1. { 1. } else { x }),
193    );
194
195    let mut d: Array2<f64> = Array::zeros((n_chroma as usize, (freq_bins).len()));
196    for (idx, mut row) in d.rows_mut().into_iter().enumerate() {
197        #[allow(clippy::cast_precision_loss)]
198        row.fill(idx as f64);
199    }
200    d = -d + &freq_bins;
201
202    d.mapv_inplace(|x| 10f64.mul_add(n_chroma_float, x + n_chroma2) % n_chroma_float - n_chroma2);
203    d = d / binwidth_bins;
204    d.mapv_inplace(|x| (-0.5 * (2. * x) * (2. * x)).exp());
205
206    let mut wts = d;
207    // Normalize by computing the l2-norm over the columns
208    for mut col in wts.columns_mut() {
209        let mut sum = col.mapv(|x| x * x).sum().sqrt();
210        if sum < f64::MIN_POSITIVE {
211            sum = 1.;
212        }
213        col /= sum;
214    }
215
216    freq_bins.mapv_inplace(|x| (-0.5 * ((x / n_chroma_float - ctroct) / octwidth).powi(2)).exp());
217
218    wts *= &freq_bins;
219
220    // np.roll(), np bro
221    let mut b = Array2::zeros(wts.dim());
222    b.slice_mut(s![-3.., ..]).assign(&wts.slice(s![..3, ..]));
223    b.slice_mut(s![..-3, ..]).assign(&wts.slice(s![3.., ..]));
224
225    wts = b;
226    let non_aliased = 1 + n_fft / 2;
227    Ok(wts.slice_move(s![.., ..non_aliased]))
228}
229
230#[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
231#[allow(clippy::missing_inline_in_public_items)]
232pub fn pip_track(
233    sample_rate: u32,
234    spectrum: &Array2<f64>,
235    n_fft: usize,
236) -> AnalysisResult<(Vec<f64>, Vec<f64>)> {
237    let sample_rate_float = f64::from(sample_rate);
238    let fmin = 150.0_f64;
239    let fmax = 4000.0_f64.min(sample_rate_float / 2.0);
240    let threshold = 0.1;
241
242    let fft_freqs = Array::linspace(0., sample_rate_float / 2., 1 + n_fft / 2);
243
244    let length = spectrum.len_of(Axis(0));
245
246    // TODO>1.0 Make this a bitvec when that won't mean depending on a crate
247    let freq_mask = fft_freqs
248        .iter()
249        .map(|&f| (fmin <= f) && (f < fmax))
250        .collect::<Vec<bool>>();
251
252    let ref_value = spectrum.map_axis(Axis(0), |x| {
253        let first: f64 = *x.first().expect("empty spectrum axis");
254        let max = x.fold(first, |acc, &elem| acc.max(elem));
255        threshold * max
256    });
257
258    // There will be at most taken_columns * length elements in pitches / mags
259    let taken_columns = freq_mask
260        .iter()
261        .fold(0, |acc, &x| if x { acc + 1 } else { acc });
262    let mut pitches = Vec::with_capacity(taken_columns * length);
263    let mut mags = Vec::with_capacity(taken_columns * length);
264
265    let beginning = freq_mask
266        .iter()
267        .position(|&b| b)
268        .ok_or_else(|| AnalysisError::AnalysisError(String::from("in chroma")))?;
269    let end = freq_mask
270        .iter()
271        .rposition(|&b| b)
272        .ok_or_else(|| AnalysisError::AnalysisError(String::from("in chroma")))?;
273
274    let zipped = Zip::indexed(spectrum.slice(s![beginning..end - 3, ..]))
275        .and(spectrum.slice(s![beginning + 1..end - 2, ..]))
276        .and(spectrum.slice(s![beginning + 2..end - 1, ..]));
277
278    // No need to handle the last column, since freq_mask[length - 1] is
279    // always going to be `false` for 22.5kHz
280    zipped.for_each(|(i, j), &before_elem, &elem, &after_elem| {
281        if elem > ref_value[j] && after_elem <= elem && before_elem < elem {
282            let avg = 0.5 * (after_elem - before_elem);
283            let mut shift = 2f64.mul_add(elem, -after_elem) - before_elem;
284            if shift.abs() < f64::MIN_POSITIVE {
285                shift += 1.;
286            }
287            shift = avg / shift;
288            #[allow(clippy::cast_precision_loss)]
289            pitches.push(((i + beginning + 1) as f64 + shift) * sample_rate_float / n_fft as f64);
290            mags.push((0.5 * avg).mul_add(shift, elem));
291        }
292    });
293
294    Ok((pitches, mags))
295}
296
297// Only use this with strictly positive `frequencies`.
298#[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
299#[inline]
300pub fn pitch_tuning(
301    frequencies: &mut Array1<f64>,
302    resolution: f64,
303    bins_per_octave: u32,
304) -> AnalysisResult<f64> {
305    if frequencies.is_empty() {
306        return Ok(0.0);
307    }
308    hz_to_octs_inplace(frequencies, 0.0, 12);
309    frequencies.mapv_inplace(|x| f64::from(bins_per_octave) * x % 1.0);
310
311    // Put everything between -0.5 and 0.5.
312    frequencies.mapv_inplace(|x| if x >= 0.5 { x - 1. } else { x });
313
314    #[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
315    let indexes = ((frequencies.to_owned() - -0.5) / resolution).mapv(|x| x as usize);
316    #[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
317    let mut counts: Array1<usize> = Array::zeros(((0.5 - -0.5) / resolution) as usize);
318    for &idx in &indexes {
319        counts[idx] += 1;
320    }
321    let max_index = counts
322        .argmax()
323        .map_err(|e| AnalysisError::AnalysisError(format!("in chroma: {e}")))?;
324
325    // Return the bin with the most reoccurring frequency.
326    #[allow(clippy::cast_precision_loss)]
327    Ok((100. * resolution).mul_add(max_index as f64, -50.) / 100.)
328}
329
330#[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
331#[inline]
332pub fn estimate_tuning(
333    sample_rate: u32,
334    spectrum: &Array2<f64>,
335    n_fft: usize,
336    resolution: f64,
337    bins_per_octave: u32,
338) -> AnalysisResult<f64> {
339    let (pitch, mag) = pip_track(sample_rate, spectrum, n_fft)?;
340
341    let (filtered_pitch, filtered_mag): (Vec<N64>, Vec<N64>) = pitch
342        .iter()
343        .zip(&mag)
344        .filter(|&(&p, _)| p > 0.)
345        .map(|(x, y)| (n64(*x), n64(*y)))
346        .unzip();
347
348    if pitch.is_empty() {
349        return Ok(0.);
350    }
351
352    let threshold: N64 = Array::from(filtered_mag.clone())
353        .quantile_axis_mut(Axis(0), n64(0.5), &Midpoint)
354        .map_err(|e| AnalysisError::AnalysisError(format!("in chroma: {e}")))?
355        .into_scalar();
356    let mut pitch = filtered_pitch
357        .iter()
358        .zip(&filtered_mag)
359        .filter_map(|(&p, &m)| if m >= threshold { Some(p.into()) } else { None })
360        .collect::<Array1<f64>>();
361    pitch_tuning(&mut pitch, resolution, bins_per_octave)
362}
363
364#[allow(
365    clippy::missing_errors_doc,
366    clippy::missing_panics_doc,
367    clippy::module_name_repetitions
368)]
369#[inline]
370pub fn chroma_stft(
371    sample_rate: u32,
372    spectrum: &mut Array2<f64>, // shape: (window_length / 2 + 1, signal.len().div_ceil(hop_length))
373    n_fft: usize,
374    n_chroma: u32,
375    tuning: f64,
376) -> AnalysisResult<Array2<f64>> {
377    spectrum.mapv_inplace(|x| x * x);
378    let mut raw_chroma = chroma_filter(sample_rate, n_fft, n_chroma, tuning)?;
379
380    raw_chroma = raw_chroma.dot(spectrum);
381
382    // We want to maximize cache locality, and are iterating over columns,
383    // so let's make sure our array is in column-major order.
384    raw_chroma = raw_chroma
385        .to_shape((raw_chroma.dim(), Order::ColumnMajor))
386        .map_err(|_| {
387            AnalysisError::AnalysisError(String::from("in chroma: failed to reorder array"))
388        })?
389        .to_owned();
390
391    for mut row in raw_chroma.columns_mut() {
392        let sum = row.sum(); // we know that our values are positive, so no need to use abs
393        if sum >= f64::MIN_POSITIVE {
394            row /= sum;
395        }
396    }
397
398    Ok(raw_chroma)
399}
400
401#[cfg(test)]
402mod test {
403    use super::*;
404    use crate::{
405        SAMPLE_RATE,
406        decoder::{Decoder as _, MecompDecoder as Decoder},
407        utils::stft,
408    };
409    use ndarray::{Array2, arr1, arr2};
410    use ndarray_npy::ReadNpyExt as _;
411    use std::{fs::File, path::Path};
412
413    #[test]
414    fn test_chroma_interval_features() {
415        let file = File::open("data/chroma.npy").unwrap();
416        let chroma = Array2::<f64>::read_npy(file).unwrap();
417        let features = chroma_interval_features(&chroma);
418        let expected_features = arr1(&[
419            0.038_602_84,
420            0.021_852_81,
421            0.042_243_79,
422            0.063_852_78,
423            0.073_111_48,
424            0.025_125_66,
425            0.003_198_99,
426            0.003_113_08,
427            0.001_074_33,
428            0.002_418_61,
429        ]);
430        for (expected, actual) in expected_features.iter().zip(&features) {
431            assert!(
432                0.000_000_01 > (expected - actual.abs()),
433                "{expected} !~= {actual}"
434            );
435        }
436    }
437
438    #[test]
439    fn test_extract_interval_features() {
440        let file = File::open("data/chroma-interval.npy").unwrap();
441        let chroma = Array2::<f64>::read_npy(file).unwrap();
442        let templates = arr2(&[
443            [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
444            [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
445            [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
446            [0, 0, 1, 0, 0, 0, 0, 1, 1, 0],
447            [0, 0, 0, 1, 0, 0, 1, 0, 0, 1],
448            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
449            [0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
450            [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
451            [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
452            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
453            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
454            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
455        ]);
456
457        let file = File::open("data/interval-feature-matrix.npy").unwrap();
458        let expected_interval_features = Array2::<f64>::read_npy(file).unwrap();
459
460        let interval_features = extract_interval_features(&chroma, &templates);
461        for (expected, actual) in expected_interval_features
462            .iter()
463            .zip(interval_features.iter())
464        {
465            assert!(
466                0.000_000_1 > (expected - actual).abs(),
467                "{expected} !~= {actual}"
468            );
469        }
470    }
471
472    #[test]
473    fn test_normalize_feature_sequence() {
474        let array = arr2(&[[0.1, 0.3, 0.4], [1.1, 0.53, 1.01]]);
475        let expected_array = arr2(&[
476            [0.083_333_33, 0.361_445_78, 0.283_687_94],
477            [0.916_666_67, 0.638_554_22, 0.716_312_06],
478        ]);
479
480        let normalized_array = normalize_feature_sequence(&array);
481
482        assert!(!array.is_empty() && !expected_array.is_empty());
483
484        for (expected, actual) in normalized_array.iter().zip(expected_array.iter()) {
485            assert!(
486                0.000_000_1 > (expected - actual).abs(),
487                "{expected} !~= {actual}"
488            );
489        }
490    }
491
492    #[test]
493    fn test_chroma_desc() {
494        let song = Decoder::new()
495            .unwrap()
496            .decode(Path::new("data/s16_mono_22_5kHz.flac"))
497            .unwrap();
498        let mut chroma_desc = ChromaDesc::new(SAMPLE_RATE, 12);
499        chroma_desc.do_(&song.samples).unwrap();
500        let expected_values = [
501            -0.356_619_36,
502            -0.635_786_53,
503            -0.295_936_82,
504            0.064_213_04,
505            0.218_524_58,
506            -0.581_239,
507            -0.946_683_5,
508            -0.948_115_3,
509            -0.982_094_5,
510            -0.959_689_74,
511        ];
512        for (expected, actual) in expected_values.iter().zip(chroma_desc.get_value().iter()) {
513            // original test wanted absolute error < 0.0000001
514            let relative_error = (expected - actual).abs() / expected.abs();
515            assert!(
516                relative_error < 0.01,
517                "relative error: {relative_error}, expected: {expected}, actual: {actual}"
518            );
519        }
520    }
521
522    #[test]
523    fn test_chroma_stft_decode() {
524        let signal = Decoder::new()
525            .unwrap()
526            .decode(Path::new("data/s16_mono_22_5kHz.flac"))
527            .unwrap()
528            .samples;
529        let mut stft = stft(&signal, 8192, 2205);
530
531        let file = File::open("data/chroma.npy").unwrap();
532        let expected_chroma = Array2::<f64>::read_npy(file).unwrap();
533
534        let chroma = chroma_stft(22050, &mut stft, 8192, 12, -0.049_999_999_999_999_99).unwrap();
535
536        assert!(!chroma.is_empty() && !expected_chroma.is_empty());
537
538        for (expected, actual) in expected_chroma.iter().zip(chroma.iter()) {
539            // original test wanted absolute error < 0.0000001
540            let relative_error = (expected - actual).abs() / expected.abs();
541            assert!(
542                relative_error < 0.01,
543                "relative error: {relative_error}, expected: {expected}, actual: {actual}"
544            );
545        }
546    }
547
548    #[test]
549    fn test_estimate_tuning() {
550        let file = File::open("data/spectrum-chroma.npy").unwrap();
551        let arr = Array2::<f64>::read_npy(file).unwrap();
552
553        let tuning = estimate_tuning(22050, &arr, 2048, 0.01, 12).unwrap();
554        assert!(
555            0.000_001 > (-0.099_999_999_999_999_98 - tuning).abs(),
556            "{tuning} !~= -0.09999999999999998"
557        );
558    }
559
560    #[test]
561    fn test_chroma_estimate_tuning_empty_fix() {
562        assert!(0. == estimate_tuning(22050, &Array2::zeros((8192, 1)), 8192, 0.01, 12).unwrap());
563    }
564
565    #[test]
566    fn test_estimate_tuning_decode() {
567        let signal = Decoder::new()
568            .unwrap()
569            .decode(Path::new("data/s16_mono_22_5kHz.flac"))
570            .unwrap()
571            .samples;
572        let stft = stft(&signal, 8192, 2205);
573
574        let tuning = estimate_tuning(22050, &stft, 8192, 0.01, 12).unwrap();
575        assert!(
576            0.000_001 > (-0.049_999_999_999_999_99 - tuning).abs(),
577            "{tuning} !~= -0.04999999999999999"
578        );
579    }
580
581    #[test]
582    fn test_pitch_tuning() {
583        let file = File::open("data/pitch-tuning.npy").unwrap();
584        let mut pitch = Array1::<f64>::read_npy(file).unwrap();
585        let tuned = pitch_tuning(&mut pitch, 0.05, 12).unwrap();
586        assert!(f64::EPSILON > (tuned + 0.1).abs(), "{tuned} != -0.1");
587    }
588
589    #[test]
590    fn test_pitch_tuning_no_frequencies() {
591        let mut frequencies = arr1(&[]);
592        let tuned = pitch_tuning(&mut frequencies, 0.05, 12).unwrap();
593        assert!(f64::EPSILON > tuned.abs(), "{tuned} != 0");
594    }
595
596    #[test]
597    fn test_pip_track() {
598        let file = File::open("data/spectrum-chroma.npy").unwrap();
599        let spectrum = Array2::<f64>::read_npy(file).unwrap();
600
601        let mags_file = File::open("data/spectrum-chroma-mags.npy").unwrap();
602        let expected_mags = Array1::<f64>::read_npy(mags_file).unwrap();
603
604        let pitches_file = File::open("data/spectrum-chroma-pitches.npy").unwrap();
605        let expected_pitches = Array1::<f64>::read_npy(pitches_file).unwrap();
606
607        let (mut pitches, mut mags) = pip_track(22050, &spectrum, 2048).unwrap();
608        pitches.sort_by(|a, b| a.partial_cmp(b).unwrap());
609        mags.sort_by(|a, b| a.partial_cmp(b).unwrap());
610
611        for (expected_pitches, actual_pitches) in expected_pitches.iter().zip(pitches.iter()) {
612            assert!(
613                0.000_000_01 > (expected_pitches - actual_pitches).abs(),
614                "{expected_pitches} !~= {actual_pitches}"
615            );
616        }
617        for (expected_mags, actual_mags) in expected_mags.iter().zip(mags.iter()) {
618            assert!(
619                0.000_000_01 > (expected_mags - actual_mags).abs(),
620                "{expected_mags} !~= {actual_mags}"
621            );
622        }
623    }
624
625    #[test]
626    fn test_chroma_filter() {
627        let file = File::open("data/chroma-filter.npy").unwrap();
628        let expected_filter = Array2::<f64>::read_npy(file).unwrap();
629
630        let filter = chroma_filter(22050, 2048, 12, -0.1).unwrap();
631
632        assert!(filter.iter().all(|&x| x > 0.));
633
634        for (expected, actual) in expected_filter.iter().zip(filter.iter()) {
635            assert!(
636                0.000_000_001 > (expected - actual).abs(),
637                "{expected} !~= {actual}"
638            );
639        }
640    }
641}