mecomp_analysis/
chroma.rs

1//! Chroma feature extraction module.
2//!
3//! Contains functions to compute the chromagram of a song, and
4//! then from this chromagram extract the song's tone and mode
5//! (minor / major).
6extern crate noisy_float;
7
8use crate::Feature;
9
10use super::errors::{AnalysisError, AnalysisResult};
11use super::utils::{Normalize, hz_to_octs_inplace, stft};
12use ndarray::{Array, Array1, Array2, Axis, Zip, arr1, arr2, concatenate, s};
13use ndarray_stats::QuantileExt;
14use ndarray_stats::interpolate::Midpoint;
15use noisy_float::prelude::*;
16
17/**
18 * General object holding the chroma descriptor.
19 *
20 * Current chroma descriptors are interval features (see
21 * <https://speech.di.uoa.gr/ICMC-SMC-2014/images/VOL_2/1461.pdf>).
22 *
23 * Contrary to the other descriptors that can be used with streaming
24 * without consequences, this one performs better if the full song is used at
25 * once.
26 */
27#[derive(Debug, Clone)]
28#[allow(clippy::module_name_repetitions)]
29pub struct ChromaDesc {
30    sample_rate: u32,
31    n_chroma: u32,
32    values_chroma: Array2<f64>,
33}
34
35impl Normalize for ChromaDesc {
36    const MAX_VALUE: Feature = 0.12;
37    const MIN_VALUE: Feature = 0.;
38}
39
40impl ChromaDesc {
41    pub const WINDOW_SIZE: usize = 8192;
42
43    #[must_use]
44    #[inline]
45    pub fn new(sample_rate: u32, n_chroma: u32) -> Self {
46        Self {
47            sample_rate,
48            n_chroma,
49            values_chroma: Array2::zeros((n_chroma as usize, 0)),
50        }
51    }
52
53    /**
54     * Compute and store the chroma of a signal.
55     *
56     * Passing a full song here once instead of streaming smaller parts of the
57     * song will greatly improve accuracy.
58     */
59    #[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
60    #[inline]
61    pub fn do_(&mut self, signal: &[f32]) -> AnalysisResult<()> {
62        let mut stft = stft(signal, Self::WINDOW_SIZE, 2205);
63        let tuning = estimate_tuning(self.sample_rate, &stft, Self::WINDOW_SIZE, 0.01, 12)?;
64        let chroma = chroma_stft(
65            self.sample_rate,
66            &mut stft,
67            Self::WINDOW_SIZE,
68            self.n_chroma,
69            tuning,
70        )?;
71        self.values_chroma = concatenate![Axis(1), self.values_chroma, chroma];
72        Ok(())
73    }
74
75    /**
76     * Get the song's interval features.
77     *
78     * Return the 6 pitch class set categories, as well as the major, minor,
79     * diminished and augmented triads.
80     *
81     * See this paper <https://speech.di.uoa.gr/ICMC-SMC-2014/images/VOL_2/1461.pdf>
82     * for more information ("Timbre-invariant Audio Features for Style Analysis of Classical
83     * Music").
84     */
85    #[inline]
86    pub fn get_value(&mut self) -> Vec<Feature> {
87        #[allow(clippy::cast_possible_truncation)]
88        chroma_interval_features(&self.values_chroma)
89            .mapv(|x| self.normalize(x as Feature))
90            .to_vec()
91    }
92}
93
94// Functions below are Rust versions of python notebooks by AudioLabs Erlang
95// (<https://www.audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html>)
96#[allow(
97    clippy::missing_errors_doc,
98    clippy::missing_panics_doc,
99    clippy::module_name_repetitions
100)]
101#[must_use]
102#[inline]
103pub fn chroma_interval_features(chroma: &Array2<f64>) -> Array1<f64> {
104    let chroma = normalize_feature_sequence(&chroma.mapv(|x| (x * 15.).exp()));
105    let templates = arr2(&[
106        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
107        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
108        [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
109        [0, 0, 1, 0, 0, 0, 0, 1, 1, 0],
110        [0, 0, 0, 1, 0, 0, 1, 0, 0, 1],
111        [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
112        [0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
113        [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
114        [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
115        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
116        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
117        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
118    ]);
119    let interval_feature_matrix = extract_interval_features(&chroma, &templates);
120    interval_feature_matrix.mean_axis(Axis(1)).unwrap()
121}
122
123#[must_use]
124#[inline]
125pub fn extract_interval_features(chroma: &Array2<f64>, templates: &Array2<i32>) -> Array2<f64> {
126    let mut f_intervals: Array2<f64> = Array::zeros((chroma.shape()[1], templates.shape()[1]));
127    for (template, mut f_interval) in templates
128        .axis_iter(Axis(1))
129        .zip(f_intervals.axis_iter_mut(Axis(1)))
130    {
131        for shift in 0..12 {
132            let mut vec: Vec<i32> = template.to_vec();
133            vec.rotate_right(shift);
134            let rolled = arr1(&vec);
135            let power = Zip::from(chroma.t())
136                .and_broadcast(&rolled)
137                .map_collect(|&f, &s| f.powi(s))
138                .map_axis_mut(Axis(1), |x| x.product());
139            f_interval += &power;
140        }
141    }
142    f_intervals.t().to_owned()
143}
144
145#[inline]
146pub fn normalize_feature_sequence(feature: &Array2<f64>) -> Array2<f64> {
147    let mut normalized_sequence = feature.to_owned();
148    for mut column in normalized_sequence.columns_mut() {
149        let mut sum = column.mapv(f64::abs).sum();
150        if sum < 0.0001 {
151            sum = 1.;
152        }
153        column /= sum;
154    }
155
156    normalized_sequence
157}
158
159// All the functions below are more than heavily inspired from
160// librosa"s code: https://github.com/librosa/librosa/blob/main/librosa/feature/spectral.py#L1165
161// chroma(22050, n_fft=5, n_chroma=12)
162//
163// Could be precomputed, but it takes very little time to compute it
164// on the fly compared to the rest of the functions, and we'd lose the
165// possibility to tweak parameters.
166#[allow(
167    clippy::missing_errors_doc,
168    clippy::missing_panics_doc,
169    clippy::module_name_repetitions,
170    clippy::missing_inline_in_public_items
171)]
172pub fn chroma_filter(
173    sample_rate: u32,
174    n_fft: usize,
175    n_chroma: u32,
176    tuning: f64,
177) -> AnalysisResult<Array2<f64>> {
178    let ctroct = 5.0;
179    let octwidth = 2.;
180    let n_chroma_float = f64::from(n_chroma);
181    let n_chroma2 = (n_chroma_float / 2.0).round();
182
183    let frequencies = Array::linspace(0., f64::from(sample_rate), n_fft + 1);
184
185    let mut freq_bins = frequencies;
186    hz_to_octs_inplace(&mut freq_bins, tuning, n_chroma);
187    freq_bins.mapv_inplace(|x| x * n_chroma_float);
188    freq_bins[0] = 1.5f64.mul_add(-n_chroma_float, freq_bins[1]);
189
190    let mut binwidth_bins = Array::ones(freq_bins.raw_dim());
191    binwidth_bins.slice_mut(s![0..freq_bins.len() - 1]).assign(
192        &(&freq_bins.slice(s![1..]) - &freq_bins.slice(s![..-1]))
193            .mapv(|x| if x <= 1. { 1. } else { x }),
194    );
195
196    let mut d: Array2<f64> = Array::zeros((n_chroma as usize, (freq_bins).len()));
197    for (idx, mut row) in d.rows_mut().into_iter().enumerate() {
198        #[allow(clippy::cast_precision_loss)]
199        row.fill(idx as f64);
200    }
201    d = -d + &freq_bins;
202
203    d.mapv_inplace(|x| 10f64.mul_add(n_chroma_float, x + n_chroma2) % n_chroma_float - n_chroma2);
204    d = d / binwidth_bins;
205    d.mapv_inplace(|x| (-0.5 * (2. * x) * (2. * x)).exp());
206
207    let mut wts = d;
208    // Normalize by computing the l2-norm over the columns
209    for mut col in wts.columns_mut() {
210        let mut sum = col.mapv(|x| x * x).sum().sqrt();
211        if sum < f64::MIN_POSITIVE {
212            sum = 1.;
213        }
214        col /= sum;
215    }
216
217    freq_bins.mapv_inplace(|x| (-0.5 * ((x / n_chroma_float - ctroct) / octwidth).powi(2)).exp());
218
219    wts *= &freq_bins;
220
221    // np.roll(), np bro
222    let mut b = Array2::zeros(wts.dim());
223    b.slice_mut(s![-3.., ..]).assign(&wts.slice(s![..3, ..]));
224    b.slice_mut(s![..-3, ..]).assign(&wts.slice(s![3.., ..]));
225
226    wts = b;
227    let non_aliased = 1 + n_fft / 2;
228    Ok(wts.slice_move(s![.., ..non_aliased]))
229}
230
231#[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
232#[allow(clippy::missing_inline_in_public_items)]
233pub fn pip_track(
234    sample_rate: u32,
235    spectrum: &Array2<f64>,
236    n_fft: usize,
237) -> AnalysisResult<(Vec<f64>, Vec<f64>)> {
238    let sample_rate_float = f64::from(sample_rate);
239    let fmin = 150.0_f64;
240    let fmax = 4000.0_f64.min(sample_rate_float / 2.0);
241    let threshold = 0.1;
242
243    let fft_freqs = Array::linspace(0., sample_rate_float / 2., 1 + n_fft / 2);
244
245    let length = spectrum.len_of(Axis(0));
246
247    // TODO>1.0 Make this a bitvec when that won't mean depending on a crate
248    let freq_mask = fft_freqs
249        .iter()
250        .map(|&f| (fmin <= f) && (f < fmax))
251        .collect::<Vec<bool>>();
252
253    let ref_value = spectrum.map_axis(Axis(0), |x| {
254        let first: f64 = *x.first().expect("empty spectrum axis");
255        let max = x.fold(first, |acc, &elem| acc.max(elem));
256        threshold * max
257    });
258
259    // There will be at most taken_columns * length elements in pitches / mags
260    let taken_columns = freq_mask
261        .iter()
262        .fold(0, |acc, &x| if x { acc + 1 } else { acc });
263    let mut pitches = Vec::with_capacity(taken_columns * length);
264    let mut mags = Vec::with_capacity(taken_columns * length);
265
266    let beginning = freq_mask
267        .iter()
268        .position(|&b| b)
269        .ok_or_else(|| AnalysisError::AnalysisError(String::from("in chroma")))?;
270    let end = freq_mask
271        .iter()
272        .rposition(|&b| b)
273        .ok_or_else(|| AnalysisError::AnalysisError(String::from("in chroma")))?;
274
275    let zipped = Zip::indexed(spectrum.slice(s![beginning..end - 3, ..]))
276        .and(spectrum.slice(s![beginning + 1..end - 2, ..]))
277        .and(spectrum.slice(s![beginning + 2..end - 1, ..]));
278
279    // No need to handle the last column, since freq_mask[length - 1] is
280    // always going to be `false` for 22.5kHz
281    zipped.for_each(|(i, j), &before_elem, &elem, &after_elem| {
282        if elem > ref_value[j] && after_elem <= elem && before_elem < elem {
283            let avg = 0.5 * (after_elem - before_elem);
284            let mut shift = 2f64.mul_add(elem, -after_elem) - before_elem;
285            if shift.abs() < f64::MIN_POSITIVE {
286                shift += 1.;
287            }
288            shift = avg / shift;
289            #[allow(clippy::cast_precision_loss)]
290            pitches.push(((i + beginning + 1) as f64 + shift) * sample_rate_float / n_fft as f64);
291            mags.push((0.5 * avg).mul_add(shift, elem));
292        }
293    });
294
295    Ok((pitches, mags))
296}
297
298// Only use this with strictly positive `frequencies`.
299#[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
300#[inline]
301pub fn pitch_tuning(
302    frequencies: &mut Array1<f64>,
303    resolution: f64,
304    bins_per_octave: u32,
305) -> AnalysisResult<f64> {
306    if frequencies.is_empty() {
307        return Ok(0.0);
308    }
309    hz_to_octs_inplace(frequencies, 0.0, 12);
310    frequencies.mapv_inplace(|x| f64::from(bins_per_octave) * x % 1.0);
311
312    // Put everything between -0.5 and 0.5.
313    frequencies.mapv_inplace(|x| if x >= 0.5 { x - 1. } else { x });
314
315    #[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
316    let indexes = ((frequencies.to_owned() - -0.5) / resolution).mapv(|x| x as usize);
317    #[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
318    let mut counts: Array1<usize> = Array::zeros(((0.5 - -0.5) / resolution) as usize);
319    for &idx in &indexes {
320        counts[idx] += 1;
321    }
322    let max_index = counts
323        .argmax()
324        .map_err(|e| AnalysisError::AnalysisError(format!("in chroma: {e}")))?;
325
326    // Return the bin with the most reoccurring frequency.
327    #[allow(clippy::cast_precision_loss)]
328    Ok((100. * resolution).mul_add(max_index as f64, -50.) / 100.)
329}
330
331#[allow(clippy::missing_errors_doc, clippy::missing_panics_doc)]
332#[inline]
333pub fn estimate_tuning(
334    sample_rate: u32,
335    spectrum: &Array2<f64>,
336    n_fft: usize,
337    resolution: f64,
338    bins_per_octave: u32,
339) -> AnalysisResult<f64> {
340    let (pitch, mag) = pip_track(sample_rate, spectrum, n_fft)?;
341
342    let (filtered_pitch, filtered_mag): (Vec<N64>, Vec<N64>) = pitch
343        .iter()
344        .zip(&mag)
345        .filter(|&(&p, _)| p > 0.)
346        .map(|(x, y)| (n64(*x), n64(*y)))
347        .unzip();
348
349    if pitch.is_empty() {
350        return Ok(0.);
351    }
352
353    let threshold: N64 = Array::from(filtered_mag.clone())
354        .quantile_axis_mut(Axis(0), n64(0.5), &Midpoint)
355        .map_err(|e| AnalysisError::AnalysisError(format!("in chroma: {e}")))?
356        .into_scalar();
357    let mut pitch = filtered_pitch
358        .iter()
359        .zip(&filtered_mag)
360        .filter_map(|(&p, &m)| if m >= threshold { Some(p.into()) } else { None })
361        .collect::<Array1<f64>>();
362    pitch_tuning(&mut pitch, resolution, bins_per_octave)
363}
364
365#[allow(
366    clippy::missing_errors_doc,
367    clippy::missing_panics_doc,
368    clippy::module_name_repetitions
369)]
370#[inline]
371pub fn chroma_stft(
372    sample_rate: u32,
373    spectrum: &mut Array2<f64>,
374    n_fft: usize,
375    n_chroma: u32,
376    tuning: f64,
377) -> AnalysisResult<Array2<f64>> {
378    spectrum.mapv_inplace(|x| x * x);
379    let mut raw_chroma = chroma_filter(sample_rate, n_fft, n_chroma, tuning)?;
380
381    raw_chroma = raw_chroma.dot(spectrum);
382    for mut row in raw_chroma.columns_mut() {
383        let mut sum = row.mapv(f64::abs).sum();
384        if sum < f64::MIN_POSITIVE {
385            sum = 1.;
386        }
387        row /= sum;
388    }
389    Ok(raw_chroma)
390}
391
392#[cfg(test)]
393mod test {
394    use super::*;
395    use crate::{
396        SAMPLE_RATE,
397        decoder::{Decoder as _, MecompDecoder as Decoder},
398        utils::stft,
399    };
400    use ndarray::{Array2, arr1, arr2};
401    use ndarray_npy::ReadNpyExt as _;
402    use std::{fs::File, path::Path};
403
404    #[test]
405    fn test_chroma_interval_features() {
406        let file = File::open("data/chroma.npy").unwrap();
407        let chroma = Array2::<f64>::read_npy(file).unwrap();
408        let features = chroma_interval_features(&chroma);
409        let expected_features = arr1(&[
410            0.038_602_84,
411            0.021_852_81,
412            0.042_243_79,
413            0.063_852_78,
414            0.073_111_48,
415            0.025_125_66,
416            0.003_198_99,
417            0.003_113_08,
418            0.001_074_33,
419            0.002_418_61,
420        ]);
421        for (expected, actual) in expected_features.iter().zip(&features) {
422            assert!(
423                0.000_000_01 > (expected - actual.abs()),
424                "{expected} !~= {actual}"
425            );
426        }
427    }
428
429    #[test]
430    fn test_extract_interval_features() {
431        let file = File::open("data/chroma-interval.npy").unwrap();
432        let chroma = Array2::<f64>::read_npy(file).unwrap();
433        let templates = arr2(&[
434            [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
435            [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
436            [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
437            [0, 0, 1, 0, 0, 0, 0, 1, 1, 0],
438            [0, 0, 0, 1, 0, 0, 1, 0, 0, 1],
439            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
440            [0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
441            [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
442            [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
443            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
444            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
445            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
446        ]);
447
448        let file = File::open("data/interval-feature-matrix.npy").unwrap();
449        let expected_interval_features = Array2::<f64>::read_npy(file).unwrap();
450
451        let interval_features = extract_interval_features(&chroma, &templates);
452        for (expected, actual) in expected_interval_features
453            .iter()
454            .zip(interval_features.iter())
455        {
456            assert!(
457                0.000_000_1 > (expected - actual).abs(),
458                "{expected} !~= {actual}"
459            );
460        }
461    }
462
463    #[test]
464    fn test_normalize_feature_sequence() {
465        let array = arr2(&[[0.1, 0.3, 0.4], [1.1, 0.53, 1.01]]);
466        let expected_array = arr2(&[
467            [0.083_333_33, 0.361_445_78, 0.283_687_94],
468            [0.916_666_67, 0.638_554_22, 0.716_312_06],
469        ]);
470
471        let normalized_array = normalize_feature_sequence(&array);
472
473        assert!(!array.is_empty() && !expected_array.is_empty());
474
475        for (expected, actual) in normalized_array.iter().zip(expected_array.iter()) {
476            assert!(
477                0.000_000_1 > (expected - actual).abs(),
478                "{expected} !~= {actual}"
479            );
480        }
481    }
482
483    #[test]
484    fn test_chroma_desc() {
485        let song = Decoder::new()
486            .unwrap()
487            .decode(Path::new("data/s16_mono_22_5kHz.flac"))
488            .unwrap();
489        let mut chroma_desc = ChromaDesc::new(SAMPLE_RATE, 12);
490        chroma_desc.do_(&song.samples).unwrap();
491        let expected_values = [
492            -0.356_619_36,
493            -0.635_786_53,
494            -0.295_936_82,
495            0.064_213_04,
496            0.218_524_58,
497            -0.581_239,
498            -0.946_683_5,
499            -0.948_115_3,
500            -0.982_094_5,
501            -0.959_689_74,
502        ];
503        for (expected, actual) in expected_values.iter().zip(chroma_desc.get_value().iter()) {
504            // original test wanted absolute error < 0.0000001
505            let relative_error = (expected - actual).abs() / expected.abs();
506            assert!(
507                relative_error < 0.01,
508                "relative error: {relative_error}, expected: {expected}, actual: {actual}"
509            );
510        }
511    }
512
513    #[test]
514    fn test_chroma_stft_decode() {
515        let signal = Decoder::new()
516            .unwrap()
517            .decode(Path::new("data/s16_mono_22_5kHz.flac"))
518            .unwrap()
519            .samples;
520        let mut stft = stft(&signal, 8192, 2205);
521
522        let file = File::open("data/chroma.npy").unwrap();
523        let expected_chroma = Array2::<f64>::read_npy(file).unwrap();
524
525        let chroma = chroma_stft(22050, &mut stft, 8192, 12, -0.049_999_999_999_999_99).unwrap();
526
527        assert!(!chroma.is_empty() && !expected_chroma.is_empty());
528
529        for (expected, actual) in expected_chroma.iter().zip(chroma.iter()) {
530            // original test wanted absolute error < 0.0000001
531            let relative_error = (expected - actual).abs() / expected.abs();
532            assert!(
533                relative_error < 0.01,
534                "relative error: {relative_error}, expected: {expected}, actual: {actual}"
535            );
536        }
537    }
538
539    #[test]
540    fn test_estimate_tuning() {
541        let file = File::open("data/spectrum-chroma.npy").unwrap();
542        let arr = Array2::<f64>::read_npy(file).unwrap();
543
544        let tuning = estimate_tuning(22050, &arr, 2048, 0.01, 12).unwrap();
545        assert!(
546            0.000_001 > (-0.099_999_999_999_999_98 - tuning).abs(),
547            "{tuning} !~= -0.09999999999999998"
548        );
549    }
550
551    #[test]
552    fn test_chroma_estimate_tuning_empty_fix() {
553        assert!(0. == estimate_tuning(22050, &Array2::zeros((8192, 1)), 8192, 0.01, 12).unwrap());
554    }
555
556    #[test]
557    fn test_estimate_tuning_decode() {
558        let signal = Decoder::new()
559            .unwrap()
560            .decode(Path::new("data/s16_mono_22_5kHz.flac"))
561            .unwrap()
562            .samples;
563        let stft = stft(&signal, 8192, 2205);
564
565        let tuning = estimate_tuning(22050, &stft, 8192, 0.01, 12).unwrap();
566        assert!(
567            0.000_001 > (-0.049_999_999_999_999_99 - tuning).abs(),
568            "{tuning} !~= -0.04999999999999999"
569        );
570    }
571
572    #[test]
573    fn test_pitch_tuning() {
574        let file = File::open("data/pitch-tuning.npy").unwrap();
575        let mut pitch = Array1::<f64>::read_npy(file).unwrap();
576        let tuned = pitch_tuning(&mut pitch, 0.05, 12).unwrap();
577        assert!(f64::EPSILON > (tuned + 0.1).abs(), "{tuned} != -0.1");
578    }
579
580    #[test]
581    fn test_pitch_tuning_no_frequencies() {
582        let mut frequencies = arr1(&[]);
583        let tuned = pitch_tuning(&mut frequencies, 0.05, 12).unwrap();
584        assert!(f64::EPSILON > tuned.abs(), "{tuned} != 0");
585    }
586
587    #[test]
588    fn test_pip_track() {
589        let file = File::open("data/spectrum-chroma.npy").unwrap();
590        let spectrum = Array2::<f64>::read_npy(file).unwrap();
591
592        let mags_file = File::open("data/spectrum-chroma-mags.npy").unwrap();
593        let expected_mags = Array1::<f64>::read_npy(mags_file).unwrap();
594
595        let pitches_file = File::open("data/spectrum-chroma-pitches.npy").unwrap();
596        let expected_pitches = Array1::<f64>::read_npy(pitches_file).unwrap();
597
598        let (mut pitches, mut mags) = pip_track(22050, &spectrum, 2048).unwrap();
599        pitches.sort_by(|a, b| a.partial_cmp(b).unwrap());
600        mags.sort_by(|a, b| a.partial_cmp(b).unwrap());
601
602        for (expected_pitches, actual_pitches) in expected_pitches.iter().zip(pitches.iter()) {
603            assert!(
604                0.000_000_01 > (expected_pitches - actual_pitches).abs(),
605                "{expected_pitches} !~= {actual_pitches}"
606            );
607        }
608        for (expected_mags, actual_mags) in expected_mags.iter().zip(mags.iter()) {
609            assert!(
610                0.000_000_01 > (expected_mags - actual_mags).abs(),
611                "{expected_mags} !~= {actual_mags}"
612            );
613        }
614    }
615
616    #[test]
617    fn test_chroma_filter() {
618        let file = File::open("data/chroma-filter.npy").unwrap();
619        let expected_filter = Array2::<f64>::read_npy(file).unwrap();
620
621        let filter = chroma_filter(22050, 2048, 12, -0.1).unwrap();
622
623        for (expected, actual) in expected_filter.iter().zip(filter.iter()) {
624            assert!(
625                0.000_000_001 > (expected - actual).abs(),
626                "{expected} !~= {actual}"
627            );
628        }
629    }
630}