mecomp_analysis/
utils.rs

1use log::warn;
2use ndarray::{Array, Array1, Array2, arr1, s};
3use rustfft::FftPlanner;
4use rustfft::num_complex::Complex;
5use std::f32::consts::PI;
6
7use crate::Feature;
8
9#[must_use]
10#[inline]
11pub fn reflect_pad(array: &[f32], pad: usize) -> Vec<f32> {
12    debug_assert!(pad < array.len(), "Padding is too large");
13    let prefix = array[1..=pad].iter().rev().copied().collect::<Vec<f32>>();
14    let suffix = array[(array.len() - 2) - pad + 1..array.len() - 1]
15        .iter()
16        .rev()
17        .copied()
18        .collect::<Vec<f32>>();
19    let mut output = Vec::with_capacity(prefix.len() + array.len() + suffix.len());
20
21    output.extend(prefix);
22    output.extend(array);
23    output.extend(suffix);
24    output
25}
26
27#[must_use]
28#[allow(clippy::missing_inline_in_public_items)]
29pub fn stft(signal: &[f32], window_length: usize, hop_length: usize) -> Array2<f64> {
30    debug_assert!(window_length % 2 == 0, "Window length must be even");
31    debug_assert!(window_length < signal.len(), "Signal is too short");
32    debug_assert!(hop_length < window_length, "Hop length is too large");
33    let half_window_length = window_length / 2;
34    // Take advantage of row-major order to have contiguous window for the
35    // `assign`, reversing the axes to have the expected shape at the end only.
36    let mut stft = Array2::zeros((signal.len().div_ceil(hop_length), half_window_length + 1));
37    let signal = reflect_pad(signal, half_window_length);
38
39    // Periodic, so window_size + 1
40    let mut hann_window = Array::zeros(window_length + 1);
41    #[allow(clippy::cast_precision_loss)]
42    for n in 0..window_length {
43        hann_window[[n]] =
44            0.5f32.mul_add(-f32::cos(2. * n as f32 * PI / (window_length as f32)), 0.5);
45    }
46    hann_window = hann_window.slice_move(s![0..window_length]);
47    let mut planner = FftPlanner::new();
48    let fft = planner.plan_fft_forward(window_length);
49
50    for (window, mut stft_col) in signal
51        .windows(window_length)
52        .step_by(hop_length)
53        .zip(stft.rows_mut())
54    {
55        let mut signal = (arr1(window) * &hann_window).mapv(|x| Complex::new(x, 0.));
56        if let Some(s) = signal.as_slice_mut() {
57            fft.process(s);
58        } else {
59            warn!("non-contiguous slice found for stft; expect slow performances.");
60            fft.process(&mut signal.to_vec());
61        }
62
63        stft_col.assign(
64            &signal
65                .slice(s![..=half_window_length])
66                .mapv(|x| f64::from(x.re.hypot(x.im))),
67        );
68    }
69    stft.permuted_axes((1, 0))
70}
71
72#[allow(clippy::cast_precision_loss)]
73pub(crate) fn mean<T: Clone + Into<f32>>(input: &[T]) -> f32 {
74    if input.is_empty() {
75        return 0.;
76    }
77    input.iter().map(|x| x.clone().into()).sum::<f32>() / input.len() as f32
78}
79
80pub(crate) trait Normalize {
81    const MAX_VALUE: Feature;
82    const MIN_VALUE: Feature;
83
84    fn normalize(&self, value: Feature) -> Feature {
85        2. * (value - Self::MIN_VALUE) / (Self::MAX_VALUE - Self::MIN_VALUE) - 1.
86    }
87}
88
89// Essentia algorithm
90// https://github.com/MTG/essentia/blob/master/src/algorithms/temporal/zerocrossingrate.cpp
91pub(crate) fn number_crossings(input: &[f32]) -> u32 {
92    if input.is_empty() {
93        return 0;
94    }
95
96    let mut crossings = 0;
97
98    let mut was_positive = input[0] > 0.;
99
100    for &sample in input {
101        let is_positive = sample > 0.;
102        if was_positive != is_positive {
103            crossings += 1;
104            was_positive = is_positive;
105        }
106    }
107
108    crossings
109}
110
111/// Only works for input of size 256 (or at least of size a multiple
112/// of 8), with values belonging to [0; 2^65].
113///
114/// This finely optimized geometric mean courtesy of
115/// Jacques-Henri Jourdan (<https://jhjourdan.mketjh.fr/>)
116#[must_use]
117#[allow(clippy::missing_inline_in_public_items)]
118pub fn geometric_mean(input: &[f32]) -> f32 {
119    debug_assert_eq!(input.len() % 8, 0, "Input size must be a multiple of 8");
120    if input.is_empty() {
121        return 0.;
122    }
123
124    let mut exponents: i32 = 0;
125    let mut mantissas: f64 = 1.;
126    for ch in input.chunks_exact(8) {
127        let mut m = (f64::from(ch[0]) * f64::from(ch[1])) * (f64::from(ch[2]) * f64::from(ch[3]));
128        m *= 3.273_390_607_896_142e150; // 2^500 : avoid underflows and denormals
129        m *= (f64::from(ch[4]) * f64::from(ch[5])) * (f64::from(ch[6]) * f64::from(ch[7]));
130        if m == 0. {
131            return 0.;
132        }
133        exponents += (m.to_bits() >> 52) as i32;
134        mantissas *= f64::from_bits((m.to_bits() & 0x000F_FFFF_FFFF_FFFF) | 0x3FF0_0000_0000_0000);
135    }
136
137    #[allow(clippy::cast_possible_truncation)]
138    let n = input.len() as u32;
139    #[allow(clippy::cast_possible_truncation)]
140    let result = (((mantissas.log2() + f64::from(exponents)) / f64::from(n) - (1023. + 500.) / 8.)
141        .exp2()) as f32;
142    result
143}
144
145pub(crate) fn hz_to_octs_inplace(
146    frequencies: &mut Array1<f64>,
147    tuning: f64,
148    bins_per_octave: u32,
149) -> &mut Array1<f64> {
150    let a440 = 440.0 * (tuning / f64::from(bins_per_octave)).exp2();
151
152    *frequencies /= a440 / 16.;
153    frequencies.mapv_inplace(f64::log2);
154    frequencies
155}
156
157#[cfg(test)]
158mod tests {
159    use super::*;
160    use crate::decoder::{Decoder as DecoderTrait, MecompDecoder as Decoder};
161    use ndarray::{Array, Array2, arr1};
162    use ndarray_npy::ReadNpyExt;
163    use std::{fs::File, path::Path};
164
165    #[test]
166    fn test_mean() {
167        let numbers = vec![0.0, 1.0, 2.0, 3.0, 4.0];
168        let mean = mean(&numbers);
169        assert!(f32::EPSILON > (2.0 - mean).abs(), "{mean} !~= 2.0");
170    }
171
172    #[test]
173    #[allow(clippy::too_many_lines)]
174    fn test_geometric_mean() {
175        let numbers = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0];
176        let mean = geometric_mean(&numbers);
177        assert!(f32::EPSILON > (0.0 - mean).abs(), "{mean} !~= 0.0");
178
179        let numbers = vec![4.0, 2.0, 1.0, 4.0, 2.0, 1.0, 2.0, 2.0];
180        let mean = geometric_mean(&numbers);
181        assert!(0.0001 > (2.0 - mean).abs(), "{mean} !~= 2.0");
182
183        // never going to happen, but just in case
184        let numbers = vec![256., 4.0, 2.0, 1.0, 4.0, 2.0, 1.0, 2.0];
185        let mean = geometric_mean(&numbers);
186        assert!(
187            0.0001 > (3.668_016_2 - mean).abs(),
188            "{mean} !~= {}",
189            3.668_016_172_818_685
190        );
191
192        let subnormal = vec![4.0, 2.0, 1.0, 4.0, 2.0, 1.0, 2.0, 1.0e-40_f32];
193        let mean = geometric_mean(&subnormal);
194        assert!(
195            0.0001 > (1.834_008e-5 - mean).abs(),
196            "{} !~= {}",
197            mean,
198            1.834_008_086_409_341_7e-5
199        );
200
201        let maximum = vec![2_f32.powi(65); 256];
202        let mean = geometric_mean(&maximum);
203        assert!(
204            0.0001 > (2_f32.powi(65) - mean.abs()),
205            "{} !~= {}",
206            mean,
207            2_f32.powi(65)
208        );
209
210        let input = [
211            0.024_454_033,
212            0.088_096_89,
213            0.445_543_62,
214            0.827_535_03,
215            0.158_220_93,
216            1.444_224_5,
217            3.697_138_5,
218            3.678_955_6,
219            1.598_157_2,
220            1.017_271_8,
221            1.443_609_6,
222            3.145_710_2,
223            2.764_110_8,
224            0.839_523_5,
225            0.248_968_29,
226            0.070_631_73,
227            0.355_419_4,
228            0.352_001_4,
229            0.797_365_1,
230            0.661_970_8,
231            0.784_104,
232            0.876_795_7,
233            0.287_382_66,
234            0.048_841_28,
235            0.322_706_5,
236            0.334_907_47,
237            0.185_888_75,
238            0.135_449_42,
239            0.140_177_46,
240            0.111_815_82,
241            0.152_631_61,
242            0.221_993_12,
243            0.056_798_387,
244            0.083_892_57,
245            0.070_009_65,
246            0.202_903_29,
247            0.370_717_38,
248            0.231_543_18,
249            0.023_348_59,
250            0.013_220_183,
251            0.035_887_096,
252            0.029_505_49,
253            0.090_338_57,
254            0.176_795_04,
255            0.081_421_87,
256            0.003_326_808_6,
257            0.012_269_007,
258            0.016_257_336,
259            0.027_027_424,
260            0.017_253_408,
261            0.017_230_038,
262            0.021_678_915,
263            0.018_645_158,
264            0.005_417_136,
265            0.006_650_174_5,
266            0.020_159_671,
267            0.026_623_515,
268            0.005_166_793_7,
269            0.016_880_387,
270            0.009_935_223_5,
271            0.011_079_361,
272            0.013_200_151,
273            0.005_320_572_3,
274            0.005_070_289_6,
275            0.008_130_498,
276            0.009_006_041,
277            0.003_602_499_8,
278            0.006_440_387_6,
279            0.004_656_151,
280            0.002_513_185_8,
281            0.003_084_559_7,
282            0.008_722_531,
283            0.017_871_628,
284            0.022_656_294,
285            0.017_539_924,
286            0.009_439_588_5,
287            0.003_085_72,
288            0.001_358_616_6,
289            0.002_746_787_2,
290            0.005_413_010_3,
291            0.004_140_312,
292            0.000_143_587_14,
293            0.001_371_840_8,
294            0.004_472_961,
295            0.003_769_122,
296            0.003_259_129_6,
297            0.003_637_24,
298            0.002_445_332_2,
299            0.000_590_368_93,
300            0.000_647_898_65,
301            0.001_745_297,
302            0.000_867_165_5,
303            0.002_156_236_2,
304            0.001_075_606_8,
305            0.002_009_199_5,
306            0.001_537_388_5,
307            0.000_984_620_4,
308            0.000_292_002_49,
309            0.000_921_162_4,
310            0.000_535_111_8,
311            0.001_491_276_5,
312            0.002_065_137_5,
313            0.000_661_122_26,
314            0.000_850_054_26,
315            0.001_900_590_1,
316            0.000_639_584_5,
317            0.002_262_803,
318            0.003_094_018_2,
319            0.002_089_161_7,
320            0.001_215_059,
321            0.001_311_408_4,
322            0.000_470_959,
323            0.000_665_480_7,
324            0.001_430_32,
325            0.001_791_889_3,
326            0.000_863_200_75,
327            0.000_560_445_5,
328            0.000_828_417_54,
329            0.000_669_453_9,
330            0.000_822_765,
331            0.000_616_575_8,
332            0.001_189_319,
333            0.000_730_024_5,
334            0.000_623_748_1,
335            0.001_207_644_4,
336            0.001_474_674_2,
337            0.002_033_916,
338            0.001_500_169_9,
339            0.000_520_51,
340            0.000_445_643_32,
341            0.000_558_462_75,
342            0.000_897_786_64,
343            0.000_805_247_05,
344            0.000_726_536_44,
345            0.000_673_052_6,
346            0.000_994_064_5,
347            0.001_109_393_7,
348            0.001_295_099_7,
349            0.000_982_682_2,
350            0.000_876_651_8,
351            0.001_654_928_7,
352            0.000_929_064_35,
353            0.000_291_306_23,
354            0.000_250_490_47,
355            0.000_228_488_02,
356            0.000_269_673_15,
357            0.000_237_375_09,
358            0.000_969_406_1,
359            0.001_063_811_8,
360            0.000_793_428_86,
361            0.000_590_835_06,
362            0.000_476_389_9,
363            0.000_951_664_1,
364            0.000_692_231_46,
365            0.000_557_113_7,
366            0.000_851_769_7,
367            0.001_071_027_7,
368            0.000_610_243_9,
369            0.000_746_876_23,
370            0.000_849_898_44,
371            0.000_495_806_2,
372            0.000_526_994,
373            0.000_215_249_22,
374            0.000_096_684_314,
375            0.000_654_554_4,
376            0.001_220_697_3,
377            0.001_210_358_3,
378            0.000_920_454_33,
379            0.000_924_843_5,
380            0.000_812_128_4,
381            0.000_239_532_56,
382            0.000_931_822_4,
383            0.001_043_966_3,
384            0.000_483_734_15,
385            0.000_298_952_22,
386            0.000_484_425_4,
387            0.000_666_829_5,
388            0.000_998_398_5,
389            0.000_860_489_7,
390            0.000_183_153_23,
391            0.000_309_180_8,
392            0.000_542_646_2,
393            0.001_040_391_5,
394            0.000_755_456_6,
395            0.000_284_601_7,
396            0.000_600_979_3,
397            0.000_765_056_9,
398            0.000_562_810_46,
399            0.000_346_616_55,
400            0.000_236_224_32,
401            0.000_598_710_6,
402            0.000_295_684_27,
403            0.000_386_978_06,
404            0.000_584_258,
405            0.000_567_097_6,
406            0.000_613_644_4,
407            0.000_564_549_3,
408            0.000_235_384_52,
409            0.000_285_574_6,
410            0.000_385_352_93,
411            0.000_431_935_65,
412            0.000_731_246_5,
413            0.000_603_072_8,
414            0.001_033_130_8,
415            0.001_195_216_2,
416            0.000_824_500_7,
417            0.000_422_183_63,
418            0.000_821_760_16,
419            0.001_132_246,
420            0.000_891_406_73,
421            0.000_635_158_8,
422            0.000_372_681_56,
423            0.000_230_35,
424            0.000_628_649_3,
425            0.000_806_159_9,
426            0.000_661_622_15,
427            0.000_227_139_01,
428            0.000_214_694_96,
429            0.000_665_457_7,
430            0.000_513_901,
431            0.000_391_766_78,
432            0.001_079_094_7,
433            0.000_735_363_7,
434            0.000_171_665_73,
435            0.000_439_648_87,
436            0.000_295_145_3,
437            0.000_177_047_08,
438            0.000_182_958_97,
439            0.000_926_536_04,
440            0.000_832_408_3,
441            0.000_804_168_4,
442            0.001_131_809_3,
443            0.001_187_149_6,
444            0.000_806_948_8,
445            0.000_628_624_75,
446            0.000_591_386_1,
447            0.000_472_182_3,
448            0.000_163_652_31,
449            0.000_177_876_57,
450            0.000_425_363_75,
451            0.000_573_699_3,
452            0.000_434_679_24,
453            0.000_090_282_94,
454            0.000_172_573_55,
455            0.000_501_957_4,
456            0.000_614_716_8,
457            0.000_216_780_5,
458            0.000_148_974_3,
459            0.000_055_081_473,
460            0.000_296_264_13,
461            0.000_378_055_67,
462            0.000_147_361_96,
463            0.000_262_513_64,
464            0.000_162_118_42,
465            0.000_185_347_7,
466            0.000_138_735_4,
467        ];
468        assert!(
469            0.000_000_01 > (0.002_575_059_7 - geometric_mean(&input)).abs(),
470            "{} !~= 0.0025750597",
471            geometric_mean(&input)
472        );
473    }
474
475    #[test]
476    fn test_hz_to_octs_inplace() {
477        let mut frequencies = arr1(&[32., 64., 128., 256.]);
478        let expected = arr1(&[0.168_640_29, 1.168_640_29, 2.168_640_29, 3.168_640_29]);
479
480        hz_to_octs_inplace(&mut frequencies, 0.5, 10)
481            .iter()
482            .zip(expected.iter())
483            .for_each(|(x, y)| assert!(0.0001 > (x - y).abs(), "{x} !~= {y}"));
484    }
485
486    #[test]
487    fn test_compute_stft() {
488        let file = File::open("data/librosa-stft.npy").unwrap();
489        let expected_stft = Array2::<f32>::read_npy(file).unwrap().mapv(f64::from);
490
491        let song = Decoder::new()
492            .unwrap()
493            .decode(Path::new("data/piano.flac"))
494            .unwrap();
495
496        let stft = stft(&song.samples, 2048, 512);
497
498        assert!(!stft.is_empty() && !expected_stft.is_empty(), "Empty STFT");
499        for (expected, actual) in expected_stft.iter().zip(stft.iter()) {
500            // NOTE: can't use relative error here due to division by zero
501            assert!(
502                0.0001 > (expected - actual).abs(),
503                "{expected} !~= {actual}"
504            );
505        }
506    }
507
508    #[test]
509    fn test_reflect_pad() {
510        let array = Array::range(0., 100_000., 1.);
511
512        let output = reflect_pad(array.as_slice().unwrap(), 3);
513        assert_eq!(&output[..4], &[3.0, 2.0, 1.0, 0.]);
514        assert_eq!(&output[3..100_003], array.to_vec());
515        assert_eq!(&output[100_003..100_006], &[99998.0, 99997.0, 99996.0]);
516    }
517}