1use log::warn;
2use ndarray::{Array, Array1, Array2, arr1, s};
3use rustfft::FftPlanner;
4use rustfft::num_complex::Complex;
5use std::f32::consts::PI;
6
7use crate::Feature;
8
9#[must_use]
10#[inline]
11pub fn reflect_pad(array: &[f32], pad: usize) -> Vec<f32> {
12 debug_assert!(pad < array.len(), "Padding is too large");
13 let prefix = array[1..=pad].iter().rev().copied().collect::<Vec<f32>>();
14 let suffix = array[(array.len() - 2) - pad + 1..array.len() - 1]
15 .iter()
16 .rev()
17 .copied()
18 .collect::<Vec<f32>>();
19 let mut output = Vec::with_capacity(prefix.len() + array.len() + suffix.len());
20
21 output.extend(prefix);
22 output.extend(array);
23 output.extend(suffix);
24 output
25}
26
27#[must_use]
28#[allow(clippy::missing_inline_in_public_items)]
29pub fn stft(signal: &[f32], window_length: usize, hop_length: usize) -> Array2<f64> {
30 debug_assert!(window_length % 2 == 0, "Window length must be even");
31 debug_assert!(window_length < signal.len(), "Signal is too short");
32 debug_assert!(hop_length < window_length, "Hop length is too large");
33 let half_window_length = window_length / 2;
34 let mut stft = Array2::zeros((signal.len().div_ceil(hop_length), half_window_length + 1));
37 let signal = reflect_pad(signal, half_window_length);
38
39 let mut hann_window = Array::zeros(window_length + 1);
41 #[allow(clippy::cast_precision_loss)]
42 for n in 0..window_length {
43 hann_window[[n]] =
44 0.5f32.mul_add(-f32::cos(2. * n as f32 * PI / (window_length as f32)), 0.5);
45 }
46 hann_window = hann_window.slice_move(s![0..window_length]);
47 let mut planner = FftPlanner::new();
48 let fft = planner.plan_fft_forward(window_length);
49
50 for (window, mut stft_col) in signal
51 .windows(window_length)
52 .step_by(hop_length)
53 .zip(stft.rows_mut())
54 {
55 let mut signal = (arr1(window) * &hann_window).mapv(|x| Complex::new(x, 0.));
56 if let Some(s) = signal.as_slice_mut() {
57 fft.process(s);
58 } else {
59 warn!("non-contiguous slice found for stft; expect slow performances.");
60 fft.process(&mut signal.to_vec());
61 }
62
63 stft_col.assign(
64 &signal
65 .slice(s![..=half_window_length])
66 .mapv(|x| f64::from(x.re.hypot(x.im))),
67 );
68 }
69 stft.permuted_axes((1, 0))
70}
71
72#[allow(clippy::cast_precision_loss)]
73pub(crate) fn mean<T: Clone + Into<f32>>(input: &[T]) -> f32 {
74 if input.is_empty() {
75 return 0.;
76 }
77 input.iter().map(|x| x.clone().into()).sum::<f32>() / input.len() as f32
78}
79
80pub(crate) trait Normalize {
81 const MAX_VALUE: Feature;
82 const MIN_VALUE: Feature;
83
84 fn normalize(&self, value: Feature) -> Feature {
85 2. * (value - Self::MIN_VALUE) / (Self::MAX_VALUE - Self::MIN_VALUE) - 1.
86 }
87}
88
89pub(crate) fn number_crossings(input: &[f32]) -> u32 {
92 if input.is_empty() {
93 return 0;
94 }
95
96 let mut crossings = 0;
97
98 let mut was_positive = input[0] > 0.;
99
100 for &sample in input {
101 let is_positive = sample > 0.;
102 if was_positive != is_positive {
103 crossings += 1;
104 was_positive = is_positive;
105 }
106 }
107
108 crossings
109}
110
111#[must_use]
117#[allow(clippy::missing_inline_in_public_items)]
118pub fn geometric_mean(input: &[f32]) -> f32 {
119 debug_assert_eq!(input.len() % 8, 0, "Input size must be a multiple of 8");
120 if input.is_empty() {
121 return 0.;
122 }
123
124 let mut exponents: i32 = 0;
125 let mut mantissas: f64 = 1.;
126 for ch in input.chunks_exact(8) {
127 let mut m = (f64::from(ch[0]) * f64::from(ch[1])) * (f64::from(ch[2]) * f64::from(ch[3]));
128 m *= 3.273_390_607_896_142e150; m *= (f64::from(ch[4]) * f64::from(ch[5])) * (f64::from(ch[6]) * f64::from(ch[7]));
130 if m == 0. {
131 return 0.;
132 }
133 exponents += (m.to_bits() >> 52) as i32;
134 mantissas *= f64::from_bits((m.to_bits() & 0x000F_FFFF_FFFF_FFFF) | 0x3FF0_0000_0000_0000);
135 }
136
137 #[allow(clippy::cast_possible_truncation)]
138 let n = input.len() as u32;
139 #[allow(clippy::cast_possible_truncation)]
140 let result = (((mantissas.log2() + f64::from(exponents)) / f64::from(n) - (1023. + 500.) / 8.)
141 .exp2()) as f32;
142 result
143}
144
145pub(crate) fn hz_to_octs_inplace(
146 frequencies: &mut Array1<f64>,
147 tuning: f64,
148 bins_per_octave: u32,
149) -> &mut Array1<f64> {
150 let a440 = 440.0 * (tuning / f64::from(bins_per_octave)).exp2();
151
152 *frequencies /= a440 / 16.;
153 frequencies.mapv_inplace(f64::log2);
154 frequencies
155}
156
157#[cfg(test)]
158mod tests {
159 use super::*;
160 use crate::decoder::{Decoder as DecoderTrait, MecompDecoder as Decoder};
161 use ndarray::{Array, Array2, arr1};
162 use ndarray_npy::ReadNpyExt;
163 use std::{fs::File, path::Path};
164
165 #[test]
166 fn test_mean() {
167 let numbers = vec![0.0, 1.0, 2.0, 3.0, 4.0];
168 let mean = mean(&numbers);
169 assert!(f32::EPSILON > (2.0 - mean).abs(), "{mean} !~= 2.0");
170 }
171
172 #[test]
173 #[allow(clippy::too_many_lines)]
174 fn test_geometric_mean() {
175 let numbers = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0];
176 let mean = geometric_mean(&numbers);
177 assert!(f32::EPSILON > (0.0 - mean).abs(), "{mean} !~= 0.0");
178
179 let numbers = vec![4.0, 2.0, 1.0, 4.0, 2.0, 1.0, 2.0, 2.0];
180 let mean = geometric_mean(&numbers);
181 assert!(0.0001 > (2.0 - mean).abs(), "{mean} !~= 2.0");
182
183 let numbers = vec![256., 4.0, 2.0, 1.0, 4.0, 2.0, 1.0, 2.0];
185 let mean = geometric_mean(&numbers);
186 assert!(
187 0.0001 > (3.668_016_2 - mean).abs(),
188 "{mean} !~= {}",
189 3.668_016_172_818_685
190 );
191
192 let subnormal = vec![4.0, 2.0, 1.0, 4.0, 2.0, 1.0, 2.0, 1.0e-40_f32];
193 let mean = geometric_mean(&subnormal);
194 assert!(
195 0.0001 > (1.834_008e-5 - mean).abs(),
196 "{} !~= {}",
197 mean,
198 1.834_008_086_409_341_7e-5
199 );
200
201 let maximum = vec![2_f32.powi(65); 256];
202 let mean = geometric_mean(&maximum);
203 assert!(
204 0.0001 > (2_f32.powi(65) - mean.abs()),
205 "{} !~= {}",
206 mean,
207 2_f32.powi(65)
208 );
209
210 let input = [
211 0.024_454_033,
212 0.088_096_89,
213 0.445_543_62,
214 0.827_535_03,
215 0.158_220_93,
216 1.444_224_5,
217 3.697_138_5,
218 3.678_955_6,
219 1.598_157_2,
220 1.017_271_8,
221 1.443_609_6,
222 3.145_710_2,
223 2.764_110_8,
224 0.839_523_5,
225 0.248_968_29,
226 0.070_631_73,
227 0.355_419_4,
228 0.352_001_4,
229 0.797_365_1,
230 0.661_970_8,
231 0.784_104,
232 0.876_795_7,
233 0.287_382_66,
234 0.048_841_28,
235 0.322_706_5,
236 0.334_907_47,
237 0.185_888_75,
238 0.135_449_42,
239 0.140_177_46,
240 0.111_815_82,
241 0.152_631_61,
242 0.221_993_12,
243 0.056_798_387,
244 0.083_892_57,
245 0.070_009_65,
246 0.202_903_29,
247 0.370_717_38,
248 0.231_543_18,
249 0.023_348_59,
250 0.013_220_183,
251 0.035_887_096,
252 0.029_505_49,
253 0.090_338_57,
254 0.176_795_04,
255 0.081_421_87,
256 0.003_326_808_6,
257 0.012_269_007,
258 0.016_257_336,
259 0.027_027_424,
260 0.017_253_408,
261 0.017_230_038,
262 0.021_678_915,
263 0.018_645_158,
264 0.005_417_136,
265 0.006_650_174_5,
266 0.020_159_671,
267 0.026_623_515,
268 0.005_166_793_7,
269 0.016_880_387,
270 0.009_935_223_5,
271 0.011_079_361,
272 0.013_200_151,
273 0.005_320_572_3,
274 0.005_070_289_6,
275 0.008_130_498,
276 0.009_006_041,
277 0.003_602_499_8,
278 0.006_440_387_6,
279 0.004_656_151,
280 0.002_513_185_8,
281 0.003_084_559_7,
282 0.008_722_531,
283 0.017_871_628,
284 0.022_656_294,
285 0.017_539_924,
286 0.009_439_588_5,
287 0.003_085_72,
288 0.001_358_616_6,
289 0.002_746_787_2,
290 0.005_413_010_3,
291 0.004_140_312,
292 0.000_143_587_14,
293 0.001_371_840_8,
294 0.004_472_961,
295 0.003_769_122,
296 0.003_259_129_6,
297 0.003_637_24,
298 0.002_445_332_2,
299 0.000_590_368_93,
300 0.000_647_898_65,
301 0.001_745_297,
302 0.000_867_165_5,
303 0.002_156_236_2,
304 0.001_075_606_8,
305 0.002_009_199_5,
306 0.001_537_388_5,
307 0.000_984_620_4,
308 0.000_292_002_49,
309 0.000_921_162_4,
310 0.000_535_111_8,
311 0.001_491_276_5,
312 0.002_065_137_5,
313 0.000_661_122_26,
314 0.000_850_054_26,
315 0.001_900_590_1,
316 0.000_639_584_5,
317 0.002_262_803,
318 0.003_094_018_2,
319 0.002_089_161_7,
320 0.001_215_059,
321 0.001_311_408_4,
322 0.000_470_959,
323 0.000_665_480_7,
324 0.001_430_32,
325 0.001_791_889_3,
326 0.000_863_200_75,
327 0.000_560_445_5,
328 0.000_828_417_54,
329 0.000_669_453_9,
330 0.000_822_765,
331 0.000_616_575_8,
332 0.001_189_319,
333 0.000_730_024_5,
334 0.000_623_748_1,
335 0.001_207_644_4,
336 0.001_474_674_2,
337 0.002_033_916,
338 0.001_500_169_9,
339 0.000_520_51,
340 0.000_445_643_32,
341 0.000_558_462_75,
342 0.000_897_786_64,
343 0.000_805_247_05,
344 0.000_726_536_44,
345 0.000_673_052_6,
346 0.000_994_064_5,
347 0.001_109_393_7,
348 0.001_295_099_7,
349 0.000_982_682_2,
350 0.000_876_651_8,
351 0.001_654_928_7,
352 0.000_929_064_35,
353 0.000_291_306_23,
354 0.000_250_490_47,
355 0.000_228_488_02,
356 0.000_269_673_15,
357 0.000_237_375_09,
358 0.000_969_406_1,
359 0.001_063_811_8,
360 0.000_793_428_86,
361 0.000_590_835_06,
362 0.000_476_389_9,
363 0.000_951_664_1,
364 0.000_692_231_46,
365 0.000_557_113_7,
366 0.000_851_769_7,
367 0.001_071_027_7,
368 0.000_610_243_9,
369 0.000_746_876_23,
370 0.000_849_898_44,
371 0.000_495_806_2,
372 0.000_526_994,
373 0.000_215_249_22,
374 0.000_096_684_314,
375 0.000_654_554_4,
376 0.001_220_697_3,
377 0.001_210_358_3,
378 0.000_920_454_33,
379 0.000_924_843_5,
380 0.000_812_128_4,
381 0.000_239_532_56,
382 0.000_931_822_4,
383 0.001_043_966_3,
384 0.000_483_734_15,
385 0.000_298_952_22,
386 0.000_484_425_4,
387 0.000_666_829_5,
388 0.000_998_398_5,
389 0.000_860_489_7,
390 0.000_183_153_23,
391 0.000_309_180_8,
392 0.000_542_646_2,
393 0.001_040_391_5,
394 0.000_755_456_6,
395 0.000_284_601_7,
396 0.000_600_979_3,
397 0.000_765_056_9,
398 0.000_562_810_46,
399 0.000_346_616_55,
400 0.000_236_224_32,
401 0.000_598_710_6,
402 0.000_295_684_27,
403 0.000_386_978_06,
404 0.000_584_258,
405 0.000_567_097_6,
406 0.000_613_644_4,
407 0.000_564_549_3,
408 0.000_235_384_52,
409 0.000_285_574_6,
410 0.000_385_352_93,
411 0.000_431_935_65,
412 0.000_731_246_5,
413 0.000_603_072_8,
414 0.001_033_130_8,
415 0.001_195_216_2,
416 0.000_824_500_7,
417 0.000_422_183_63,
418 0.000_821_760_16,
419 0.001_132_246,
420 0.000_891_406_73,
421 0.000_635_158_8,
422 0.000_372_681_56,
423 0.000_230_35,
424 0.000_628_649_3,
425 0.000_806_159_9,
426 0.000_661_622_15,
427 0.000_227_139_01,
428 0.000_214_694_96,
429 0.000_665_457_7,
430 0.000_513_901,
431 0.000_391_766_78,
432 0.001_079_094_7,
433 0.000_735_363_7,
434 0.000_171_665_73,
435 0.000_439_648_87,
436 0.000_295_145_3,
437 0.000_177_047_08,
438 0.000_182_958_97,
439 0.000_926_536_04,
440 0.000_832_408_3,
441 0.000_804_168_4,
442 0.001_131_809_3,
443 0.001_187_149_6,
444 0.000_806_948_8,
445 0.000_628_624_75,
446 0.000_591_386_1,
447 0.000_472_182_3,
448 0.000_163_652_31,
449 0.000_177_876_57,
450 0.000_425_363_75,
451 0.000_573_699_3,
452 0.000_434_679_24,
453 0.000_090_282_94,
454 0.000_172_573_55,
455 0.000_501_957_4,
456 0.000_614_716_8,
457 0.000_216_780_5,
458 0.000_148_974_3,
459 0.000_055_081_473,
460 0.000_296_264_13,
461 0.000_378_055_67,
462 0.000_147_361_96,
463 0.000_262_513_64,
464 0.000_162_118_42,
465 0.000_185_347_7,
466 0.000_138_735_4,
467 ];
468 assert!(
469 0.000_000_01 > (0.002_575_059_7 - geometric_mean(&input)).abs(),
470 "{} !~= 0.0025750597",
471 geometric_mean(&input)
472 );
473 }
474
475 #[test]
476 fn test_hz_to_octs_inplace() {
477 let mut frequencies = arr1(&[32., 64., 128., 256.]);
478 let expected = arr1(&[0.168_640_29, 1.168_640_29, 2.168_640_29, 3.168_640_29]);
479
480 hz_to_octs_inplace(&mut frequencies, 0.5, 10)
481 .iter()
482 .zip(expected.iter())
483 .for_each(|(x, y)| assert!(0.0001 > (x - y).abs(), "{x} !~= {y}"));
484 }
485
486 #[test]
487 fn test_compute_stft() {
488 let file = File::open("data/librosa-stft.npy").unwrap();
489 let expected_stft = Array2::<f32>::read_npy(file).unwrap().mapv(f64::from);
490
491 let song = Decoder::new()
492 .unwrap()
493 .decode(Path::new("data/piano.flac"))
494 .unwrap();
495
496 let stft = stft(&song.samples, 2048, 512);
497
498 assert!(!stft.is_empty() && !expected_stft.is_empty(), "Empty STFT");
499 for (expected, actual) in expected_stft.iter().zip(stft.iter()) {
500 assert!(
502 0.0001 > (expected - actual).abs(),
503 "{expected} !~= {actual}"
504 );
505 }
506 }
507
508 #[test]
509 fn test_reflect_pad() {
510 let array = Array::range(0., 100_000., 1.);
511
512 let output = reflect_pad(array.as_slice().unwrap(), 3);
513 assert_eq!(&output[..4], &[3.0, 2.0, 1.0, 0.]);
514 assert_eq!(&output[3..100_003], array.to_vec());
515 assert_eq!(&output[100_003..100_006], &[99998.0, 99997.0, 99996.0]);
516 }
517}