mecomp_analysis/clustering.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
//! this module contains helpers that wrap the a k-means crate to perform clustering on the data
//! without having to choose an exact number of clusters.
//!
//! Instead, you provide the minimum and maximum number of clusters you want to try, and we'll
//! use one of a range of methods to determine the optimal number of clusters.
//!
//! # References:
//!
//! - The gap statistic [R. Tibshirani, G. Walther, and T. Hastie (Standford University, 2001)](https://hastie.su.domains/Papers/gap.pdf)
//! - The Davies-Bouldin index [wikipedia](https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index)
use linfa::prelude::*;
use linfa_clustering::{GaussianMixtureModel, KMeans};
use linfa_nn::distance::{Distance, L2Dist};
use linfa_tsne::TSneParams;
use log::{debug, info};
use ndarray::{Array, Array1, Array2, ArrayView1, ArrayView2, Axis};
use ndarray_rand::RandomExt;
use rand::distributions::Uniform;
use rayon::iter::{IntoParallelRefIterator, ParallelIterator};
use statrs::statistics::Statistics;
use crate::{errors::ClusteringError, Analysis, Feature, NUMBER_FEATURES};
pub struct AnalysisArray(pub(crate) Array2<Feature>);
impl From<Vec<Analysis>> for AnalysisArray {
fn from(data: Vec<Analysis>) -> Self {
let shape = (data.len(), NUMBER_FEATURES);
debug_assert_eq!(shape, (data.len(), data[0].inner().len()));
Self(
Array2::from_shape_vec(shape, data.into_iter().flat_map(|a| *a.inner()).collect())
.expect("Failed to convert to array, shape mismatch"),
)
}
}
impl From<Vec<[Feature; NUMBER_FEATURES]>> for AnalysisArray {
fn from(data: Vec<[Feature; NUMBER_FEATURES]>) -> Self {
let shape = (data.len(), NUMBER_FEATURES);
debug_assert_eq!(shape, (data.len(), data[0].len()));
Self(
Array2::from_shape_vec(shape, data.into_iter().flatten().collect())
.expect("Failed to convert to array, shape mismatch"),
)
}
}
#[derive(Clone, Copy, Debug)]
#[allow(clippy::module_name_repetitions)]
pub enum ClusteringMethod {
KMeans,
GaussianMixtureModel,
}
impl ClusteringMethod {
/// Fit the clustering method to the samples and get the labels
#[must_use]
fn fit(self, k: usize, samples: &Array2<Feature>) -> Array1<usize> {
match self {
Self::KMeans => {
let model = KMeans::params(k)
// .max_n_iterations(MAX_ITERATIONS)
.fit(&Dataset::from(samples.clone()))
.unwrap();
model.predict(samples)
}
Self::GaussianMixtureModel => {
let model = GaussianMixtureModel::params(k)
.init_method(linfa_clustering::GmmInitMethod::KMeans)
.n_runs(10)
.fit(&Dataset::from(samples.clone()))
.unwrap();
model.predict(samples)
}
}
}
}
#[derive(Clone, Copy, Debug)]
pub enum KOptimal {
GapStatistic {
/// The number of reference datasets to generate
b: usize,
},
DaviesBouldin,
}
// log the number of features
const EMBEDDING_SIZE: usize =
// 2;
{
let log2 = usize::ilog2(NUMBER_FEATURES) as usize;
if log2 < 2 {
2
} else {
log2
}
};
#[allow(clippy::module_name_repetitions)]
pub struct ClusteringHelper<S>
where
S: Sized,
{
state: S,
}
pub struct EntryPoint;
pub struct NotInitialized {
/// The embeddings of our input, as a Nx`EMBEDDING_SIZE` array
embeddings: Array2<Feature>,
pub k_max: usize,
pub optimizer: KOptimal,
pub clustering_method: ClusteringMethod,
}
pub struct Initialized {
/// The embeddings of our input, as a Nx`EMBEDDING_SIZE` array
embeddings: Array2<Feature>,
pub k: usize,
pub clustering_method: ClusteringMethod,
}
pub struct Finished {
/// The labelings of the samples, as a Nx1 array.
/// Each element is the cluster that the corresponding sample belongs to.
labels: Array1<usize>,
pub k: usize,
}
/// Functions available for all states
impl ClusteringHelper<EntryPoint> {
/// Create a new `KMeansHelper` object
///
/// # Errors
///
/// Will return an error if there was an error projecting the data into a lower-dimensional space
pub fn new(
samples: AnalysisArray,
k_max: usize,
optimizer: KOptimal,
clustering_method: ClusteringMethod,
) -> Result<ClusteringHelper<NotInitialized>, ClusteringError> {
// first use the t-SNE algorithm to project the data into a lower-dimensional space
debug!("Generating embeddings (size: {EMBEDDING_SIZE}) using t-SNE",);
if samples.0.nrows() <= 15 {
return Err(ClusteringError::SmallLibrary);
}
#[allow(clippy::cast_precision_loss)]
let mut embeddings = TSneParams::embedding_size(EMBEDDING_SIZE)
.perplexity(f64::max(samples.0.nrows() as f64 / 20., 5.))
.approx_threshold(0.5)
.transform(samples.0)?;
debug!("Embeddings shape: {:?}", embeddings.shape());
// normalize the embeddings so each dimension is between -1 and 1
debug!("Normalizing embeddings");
for i in 0..EMBEDDING_SIZE {
let min = embeddings.column(i).min();
let max = embeddings.column(i).max();
let range = max - min;
embeddings
.column_mut(i)
.mapv_inplace(|v| ((v - min) / range).mul_add(2., -1.));
}
Ok(ClusteringHelper {
state: NotInitialized {
embeddings,
k_max,
optimizer,
clustering_method,
},
})
}
}
/// Functions available for `NotInitialized` state
impl ClusteringHelper<NotInitialized> {
/// Initialize the `KMeansHelper` object
///
/// # Errors
///
/// Will return an error if there was an error calculating the optimal number of clusters
pub fn initialize(self) -> Result<ClusteringHelper<Initialized>, ClusteringError> {
let k = self.get_optimal_k()?;
Ok(ClusteringHelper {
state: Initialized {
embeddings: self.state.embeddings,
k,
clustering_method: self.state.clustering_method,
},
})
}
fn get_optimal_k(&self) -> Result<usize, ClusteringError> {
match self.state.optimizer {
KOptimal::GapStatistic { b } => self.get_optimal_k_gap_statistic(b),
KOptimal::DaviesBouldin => self.get_optimal_k_davies_bouldin(),
}
}
/// Get the optimal number of clusters using the gap statistic
///
/// # References:
///
/// - [R. Tibshirani, G. Walther, and T. Hastie (Standford University, 2001)](https://hastie.su.domains/Papers/gap.pdf)
///
/// # Algorithm:
///
/// 1. Cluster the observed data, varying the number of clusters from k = 1, …, kmax, and compute the corresponding total within intra-cluster variation Wk.
/// 2. Generate B reference data sets with a random uniform distribution. Cluster each of these reference data sets with varying number of clusters k = 1, …, kmax,
/// and compute the corresponding total within intra-cluster variation `W_{kb}`.
/// 3. Compute the estimated gap statistic as the deviation of the observed `W_k` value from its expected value `W_kb` under the null hypothesis:
/// `Gap(k)=(1/B) \sum_{b=1}^{B} \log(W^*_{kb})−\log(W_k)`.
/// Compute also the standard deviation of the statistics.
/// 4. Choose the number of clusters as the smallest value of k such that the gap statistic is within one standard deviation of the gap at k+1:
/// `Gap(k)≥Gap(k + 1)−s_{k + 1}`.
fn get_optimal_k_gap_statistic(&self, b: usize) -> Result<usize, ClusteringError> {
// our reference data sets
let reference_data_sets = generate_reference_data_set(self.state.embeddings.view(), b);
let results = (1..=self.state.k_max)
// for each k, cluster the data into k clusters
.map(|k| {
debug!("Fitting k-means to embeddings with k={k}");
let labels = self.state.clustering_method.fit(k, &self.state.embeddings);
(k, labels)
})
// for each k, calculate the gap statistic, and the standard deviation of the statistics
.map(|(k, labels)| {
// first, we calculate the within intra-cluster variation for the observed data
let pairwise_distances =
calc_pairwise_distances(self.state.embeddings.view(), k, labels.view());
let w_k = calc_within_dispersion(labels.view(), k, pairwise_distances.view());
// then, we calculate the within intra-cluster variation for the reference data sets
debug!(
"Calculating within intra-cluster variation for reference data sets with k={k}"
);
let w_kb = reference_data_sets.par_iter().map(|ref_data| {
// cluster the reference data into k clusters
let ref_labels = self.state.clustering_method.fit(k, ref_data);
// calculate the within intra-cluster variation for the reference data
let ref_pairwise_distances =
calc_pairwise_distances(ref_data.view(), k, ref_labels.view());
calc_within_dispersion(ref_labels.view(), k, ref_pairwise_distances.view())
});
// finally, we calculate the gap statistic
#[allow(clippy::cast_precision_loss)]
let gap_k = (1.0 / b as f64)
.mul_add(w_kb.clone().map(f64::log2).sum::<f64>().log2(), -w_k.log2());
#[allow(clippy::cast_precision_loss)]
let l = (1.0 / b as f64) * w_kb.clone().map(f64::log2).sum::<f64>();
#[allow(clippy::cast_precision_loss)]
let standard_deviation = ((1.0 / b as f64)
* w_kb.map(|w_kb| (w_kb.log2() - l).powi(2)).sum::<f64>())
.sqrt();
#[allow(clippy::cast_precision_loss)]
let s_k = standard_deviation * (1.0 + 1.0 / b as f64).sqrt();
(k, gap_k, s_k)
});
// // plot the gap_k (whisker with s_k) w.r.t. k
// #[cfg(feature = "plot_gap")]
// plot_gap_statistic(results.clone().collect::<Vec<_>>());
// finally, we go over the iterator to find the optimal k
let (mut optimal_k, mut gap_k_minus_one) = (None, None);
for (k, gap_k, s_k) in results {
info!("k: {k}, gap_k: {gap_k}, s_k: {s_k}");
if let Some(gap_k_minus_one) = gap_k_minus_one {
if gap_k_minus_one >= gap_k - s_k {
info!("Optimal k found: {}", k - 1);
optimal_k = Some(k - 1);
break;
}
}
gap_k_minus_one = Some(gap_k);
}
optimal_k.ok_or(ClusteringError::OptimalKNotFound(self.state.k_max))
}
fn get_optimal_k_davies_bouldin(&self) -> Result<usize, ClusteringError> {
todo!();
}
}
/// Convert a vector of Analyses into a 2D array
///
/// # Panics
///
/// Will panic if the shape of the data does not match the number of features, should never happen
#[must_use]
pub fn convert_to_array(data: Vec<Analysis>) -> AnalysisArray {
// Convert vector to Array
let shape = (data.len(), NUMBER_FEATURES);
debug_assert_eq!(shape, (data.len(), data[0].inner().len()));
AnalysisArray(
Array2::from_shape_vec(shape, data.into_iter().flat_map(|a| *a.inner()).collect())
.expect("Failed to convert to array, shape mismatch"),
)
}
/// Generate B reference data sets with a random uniform distribution
///
/// (excerpt from reference paper)
/// """
/// We consider two choices for the reference distribution:
///
/// 1. generate each reference feature uniformly over the range of the observed values for that feature.
/// 2. generate the reference features from a uniform distribution over a box aligned with the
/// principle components of the data.
/// In detail, if X is our n by p data matrix, we assume that the columns have mean 0 and compute
/// the singular value decomposition X = UDV^T. We transform via X' = XV and then draw uniform features Z'
/// over the ranges of the columns of X', as in method (1) above.
/// Finally, we back-transform via Z=Z'V^T to give reference data Z.
///
/// Method (1) has the advantage of simplicity. Method (2) takes into account the shape of the
/// data distribution and makes the procedure rotationally invariant, as long as the
/// clustering method itself is invariant
/// """
///
/// For now, we will use method (1) as it is simpler to implement
/// and we know that our data is already normalized and that
/// the ordering of features is important, meaning that we can't
/// rotate the data anyway.
fn generate_reference_data_set(samples: ArrayView2<Feature>, b: usize) -> Vec<Array2<f64>> {
let mut reference_data_sets = Vec::with_capacity(b);
for _ in 0..b {
reference_data_sets.push(generate_ref_single(samples));
}
reference_data_sets
}
fn generate_ref_single(samples: ArrayView2<Feature>) -> Array2<f64> {
let feature_distributions = samples
.axis_iter(Axis(1))
.map(|feature| Array::random(feature.dim(), Uniform::new(feature.min(), feature.max())))
.collect::<Vec<_>>();
let feature_dists_views = feature_distributions
.iter()
.map(ndarray::ArrayBase::view)
.collect::<Vec<_>>();
ndarray::stack(Axis(0), &feature_dists_views)
.unwrap()
.t()
.to_owned()
}
/// Calculate `W_k`, the within intra-cluster variation for the given clustering
///
/// `W_k = \sum_{r=1}^{k} \frac{D_r}{2*n_r}`
fn calc_within_dispersion(
labels: ArrayView1<usize>,
k: usize,
pairwise_distances: ArrayView1<Feature>,
) -> Feature {
debug_assert_eq!(k, labels.iter().max().unwrap() + 1);
// we first need to convert our list of labels into a list of the number of samples in each cluster
let counts = labels.iter().fold(vec![0; k], |mut counts, &label| {
counts[label] += 1;
counts
});
// then, we calculate the within intra-cluster variation
counts
.iter()
.zip(pairwise_distances.iter())
.map(|(&count, distance)| distance / (2.0 * f64::from(count)))
.sum()
}
/// Calculate the `D_r` array, the sum of the pairwise distances in cluster r, for all clusters in the given clustering
///
/// # Arguments
///
/// - `samples`: The samples in the dataset
/// - `k`: The number of clusters
/// - `labels`: The cluster labels for each sample
fn calc_pairwise_distances(
samples: ArrayView2<Feature>,
k: usize,
labels: ArrayView1<usize>,
) -> Array1<Feature> {
debug_assert_eq!(
samples.nrows(),
labels.len(),
"Samples and labels must have the same length"
);
debug_assert_eq!(
k,
labels.iter().max().unwrap() + 1,
"Labels must be in the range 0..k"
);
// for each cluster, calculate the sum of the pairwise distances between samples in that cluster
(0..k)
.map(|k| {
(
k,
samples
.outer_iter()
.zip(labels.iter())
.filter_map(|(s, &l)| (l == k).then_some(s))
.collect::<Vec<_>>(),
)
})
.fold(Array1::zeros(k), |mut distances, (label, cluster)| {
distances[label] += cluster
.iter()
.enumerate()
.map(|(i, &a)| {
cluster
.iter()
.skip(i + 1)
.map(|&b| L2Dist.distance(a, b))
.sum::<Feature>()
})
.sum::<Feature>();
distances
})
}
/// Functions available for Initialized state
impl ClusteringHelper<Initialized> {
/// Cluster the data into k clusters
///
/// # Errors
///
/// Will return an error if the clustering fails
#[must_use]
pub fn cluster(self) -> ClusteringHelper<Finished> {
let labels = self
.state
.clustering_method
.fit(self.state.k, &self.state.embeddings);
ClusteringHelper {
state: Finished {
labels,
k: self.state.k,
},
}
}
}
/// Functions available for Finished state
impl ClusteringHelper<Finished> {
/// use the labels to reorganize the provided samples into clusters
#[must_use]
pub fn extract_analysis_clusters<T: Clone>(&self, samples: Vec<T>) -> Vec<Vec<T>> {
let mut clusters = vec![Vec::new(); self.state.k];
for (sample, &label) in samples.into_iter().zip(self.state.labels.iter()) {
clusters[label].push(sample);
}
clusters
}
}
#[cfg(test)]
mod tests {
use super::*;
use ndarray::{arr1, arr2, s};
use pretty_assertions::assert_eq;
#[test]
fn test_generate_reference_data_set() {
let data = arr2(&[[10.0, -10.0], [20.0, -20.0], [30.0, -30.0]]);
let ref_data = generate_ref_single(data.view());
// First column all vals between 10.0 and 30.0
assert!(ref_data
.slice(s![.., 0])
.iter()
.all(|v| *v >= 10.0 && *v <= 30.0));
// Second column all vals between -10.0 and -30.0
assert!(ref_data
.slice(s![.., 1])
.iter()
.all(|v| *v <= -10.0 && *v >= -30.0));
// check that the shape is correct
assert_eq!(ref_data.shape(), data.shape());
// check that the data is not the same as the original data
assert_ne!(ref_data, data);
}
#[test]
fn test_pairwise_distances() {
let samples = arr2(&[[1.0, 1.0], [1.0, 1.0], [2.0, 2.0], [2.0, 2.0]]);
let labels = arr1(&[0, 0, 1, 1]);
let pairwise_distances = calc_pairwise_distances(samples.view(), 2, labels.view());
assert_eq!(pairwise_distances[0], 0.0);
assert_eq!(pairwise_distances[1], 0.0);
let samples = arr2(&[[1.0, 2.0], [1.0, 1.0], [2.0, 2.0], [2.0, 3.0]]);
let pairwise_distances = calc_pairwise_distances(samples.view(), 2, labels.view());
assert_eq!(pairwise_distances[0], 1.0);
assert_eq!(pairwise_distances[1], 1.0);
}
#[test]
fn test_convert_to_vec() {
let data = vec![
Analysis::new([1.0; NUMBER_FEATURES]),
Analysis::new([2.0; NUMBER_FEATURES]),
Analysis::new([3.0; NUMBER_FEATURES]),
];
let array = convert_to_array(data.clone());
assert_eq!(array.0.shape(), &[3, NUMBER_FEATURES]);
assert_eq!(array.0[[0, 0]], 1.0);
assert_eq!(array.0[[1, 0]], 2.0);
assert_eq!(array.0[[2, 0]], 3.0);
// check that axis iteration works how we expect
// axis 0
let mut iter = array.0.axis_iter(Axis(0));
assert_eq!(iter.next().unwrap().to_vec(), vec![1.0; NUMBER_FEATURES]);
assert_eq!(iter.next().unwrap().to_vec(), vec![2.0; NUMBER_FEATURES]);
assert_eq!(iter.next().unwrap().to_vec(), vec![3.0; NUMBER_FEATURES]);
// axis 1
for column in array.0.axis_iter(Axis(1)) {
assert_eq!(column.to_vec(), vec![1.0, 2.0, 3.0]);
}
}
}
// #[cfg(feature = "plot_gap")]
// fn plot_gap_statistic(data: Vec<(usize, f64, f64)>) {
// use plotters::prelude::*;
// // Assuming data is a Vec<(usize, f64, f64)> of (k, gap_k, s_k)
// let root_area = BitMapBackend::new("gap_statistic_plot.png", (640, 480)).into_drawing_area();
// root_area.fill(&WHITE).unwrap();
// let max_gap_k = data
// .iter()
// .map(|(_, gap_k, _)| *gap_k)
// .fold(f64::MIN, f64::max);
// let min_gap_k = data
// .iter()
// .map(|(_, gap_k, _)| *gap_k)
// .fold(f64::MAX, f64::min);
// let max_k = data.iter().map(|(k, _, _)| *k).max().unwrap_or(0);
// let mut chart = ChartBuilder::on(&root_area)
// .caption("Gap Statistic Plot", ("sans-serif", 30))
// .margin(5)
// .x_label_area_size(30)
// .y_label_area_size(30)
// .build_cartesian_2d(0..max_k, min_gap_k..max_gap_k)
// .unwrap();
// chart.configure_mesh().draw().unwrap();
// for (k, gap_k, s_k) in data {
// chart
// .draw_series(PointSeries::of_element(
// vec![(k, gap_k)],
// 5,
// &RED,
// &|coord, size, style| {
// EmptyElement::at(coord) + Circle::new((0, 0), size, style.filled())
// },
// ))
// .unwrap();
// // Drawing error bars
// chart
// .draw_series(LineSeries::new(
// vec![(k, gap_k - s_k), (k, gap_k + s_k)],
// &BLACK,
// ))
// .unwrap();
// }
// root_area.present().unwrap();
// }