mea/mutex/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
// Copyright 2024 tison <wander4096@gmail.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! An async mutex for protecting shared data.
//!
//! Unlike a standard mutex, this implementation is designed to work with async/await,
//! ensuring tasks yield properly when the lock is contended. This makes it suitable
//! for protecting shared resources in async code.
//!
//! This mutex will block tasks waiting for the lock to become available. The
//! mutex can be created via [`new`] and the protected data can be accessed
//! via the async [`lock`] method.
//!
//! # Examples
//!
//! ```
//! # #[tokio::main]
//! # async fn main() {
//! use std::sync::Arc;
//!
//! use mea::mutex::Mutex;
//!
//! let mutex = Arc::new(Mutex::new(0));
//! let mut handles = Vec::new();
//!
//! for i in 0..3 {
//! let mutex = mutex.clone();
//! handles.push(tokio::spawn(async move {
//! let mut lock = mutex.lock().await;
//! *lock += i;
//! }));
//! }
//!
//! for handle in handles {
//! handle.await.unwrap();
//! }
//!
//! let final_value = mutex.lock().await;
//! assert_eq!(*final_value, 3); // 0 + 1 + 2
//! # }
//! ```
//!
//! [`new`]: Mutex::new
//! [`lock`]: Mutex::lock
use std::cell::UnsafeCell;
use std::fmt;
use std::ops::Deref;
use std::ops::DerefMut;
use std::sync::Arc;
use crate::internal;
/// An async mutex for protecting shared data.
///
/// See the [module level documentation](self) for more.
pub struct Mutex<T: ?Sized> {
s: internal::Semaphore,
c: UnsafeCell<T>,
}
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
impl<T> From<T> for Mutex<T> {
fn from(t: T) -> Self {
Self::new(t)
}
}
impl<T: Default> Default for Mutex<T> {
fn default() -> Self {
Self::new(T::default())
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_struct("Mutex");
match self.try_lock() {
Some(inner) => d.field("data", &&*inner),
None => d.field("data", &format_args!("<locked>")),
};
d.finish()
}
}
impl<T> Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
///
/// # Examples
///
/// ```
/// use mea::mutex::Mutex;
///
/// let mutex = Mutex::new(5);
/// ```
pub fn new(t: T) -> Self {
let s = internal::Semaphore::new(1);
let c = UnsafeCell::new(t);
Self { s, c }
}
/// Consumes the mutex, returning the underlying data.
///
/// # Examples
///
/// ```
/// use mea::mutex::Mutex;
///
/// let mutex = Mutex::new(1);
/// let n = mutex.into_inner();
/// assert_eq!(n, 1);
/// ```
pub fn into_inner(self) -> T {
self.c.into_inner()
}
}
impl<T: ?Sized> Mutex<T> {
/// Locks this mutex, causing the current task to yield until the lock has been acquired. When
/// the lock has been acquired, function returns a [`MutexGuard`].
///
/// This method is async and will yield the current task if the mutex is currently held by
/// another task. When the mutex becomes available, the task will be woken up and given the
/// lock.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute locks in the order they were requested.
/// Cancelling a call to `lock` makes you lose your place in the queue.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use mea::mutex::Mutex;
///
/// let mutex = Mutex::new(1);
///
/// let mut n = mutex.lock().await;
/// *n = 2;
/// # }
/// ```
pub async fn lock(&self) -> MutexGuard<'_, T> {
self.s.acquire(1).await;
MutexGuard { lock: self }
}
/// Attempts to acquire the lock, and returns `None` if the lock is currently held somewhere
/// else.
///
/// # Examples
///
/// ```
/// use mea::mutex::Mutex;
///
/// let mutex = Mutex::new(1);
/// let mut guard = mutex.try_lock().expect("mutex is locked");
/// *guard += 1;
/// assert_eq!(2, *guard);
/// ```
pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
if self.s.try_acquire(1) {
let guard = MutexGuard { lock: self };
Some(guard)
} else {
None
}
}
/// Locks this mutex, causing the current task to yield until the lock has been acquired. When
/// the lock has been acquired, this returns an [`OwnedMutexGuard`].
///
/// This method is async and will yield the current task if the mutex is currently held by
/// another task. When the mutex becomes available, the task will be woken up and given the
/// lock.
///
/// This method is identical to [`Mutex::lock`], except that the returned guard references the
/// `Mutex` with an [`Arc`] rather than by borrowing it. Therefore, the `Mutex` must be
/// wrapped in an `Arc` to call this method, and the guard will live for the `'static` lifetime,
/// as it keeps the `Mutex` alive by holding an `Arc`.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute locks in the order they were requested.
/// Cancelling a call to `lock_owned` makes you lose your place in the queue.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use std::sync::Arc;
///
/// use mea::mutex::Mutex;
///
/// let mutex = Arc::new(Mutex::new(1));
///
/// let mut n = mutex.clone().lock_owned().await;
/// *n = 2;
/// # }
/// ```
pub async fn lock_owned(self: Arc<Self>) -> OwnedMutexGuard<T> {
self.s.acquire(1).await;
OwnedMutexGuard { lock: self }
}
/// Attempts to acquire the lock, and returns `None` if the lock is currently held somewhere
/// else.
///
/// This method is identical to [`Mutex::try_lock`], except that the returned guard references
/// the `Mutex` with an [`Arc`] rather than by borrowing it. Therefore, the `Mutex` must be
/// wrapped in an `Arc` to call this method, and the guard will live for the `'static` lifetime,
/// as it keeps the `Mutex` alive by holding an `Arc`.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// use mea::mutex::Mutex;
///
/// let mutex = Arc::new(Mutex::new(1));
/// let mut guard = mutex.clone().try_lock_owned().expect("mutex is locked");
/// *guard += 1;
/// assert_eq!(2, *guard);
/// ```
pub fn try_lock_owned(self: Arc<Self>) -> Option<OwnedMutexGuard<T>> {
if self.s.try_acquire(1) {
let guard = OwnedMutexGuard { lock: self };
Some(guard)
} else {
None
}
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to take place: the
/// mutable borrow statically guarantees no locks exist.
///
/// # Examples
///
/// ```
/// use mea::mutex::Mutex;
///
/// let mut mutex = Mutex::new(1);
/// let n = mutex.get_mut();
/// *n = 2;
/// ```
pub fn get_mut(&mut self) -> &mut T {
self.c.get_mut()
}
}
/// RAII structure used to release the exclusive lock on a mutex when dropped.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct MutexGuard<'a, T: ?Sized> {
lock: &'a Mutex<T>,
}
pub(crate) fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a Mutex<T> {
guard.lock
}
unsafe impl<T: ?Sized + Send + Sync> Sync for MutexGuard<'_, T> {}
impl<T: ?Sized> Drop for MutexGuard<'_, T> {
fn drop(&mut self) {
self.lock.s.release(1);
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { &*self.lock.c.get() }
}
}
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *self.lock.c.get() }
}
}
/// An owned handle to a held `Mutex`.
///
/// This guard is only available from a [`Mutex`] that is wrapped in an [`Arc`]. It is identical to
/// [`MutexGuard`], except that rather than borrowing the `Mutex`, it clones the `Arc`, incrementing
/// the reference count. This means that unlike `MutexGuard`, it will have the `'static` lifetime.
///
/// As long as you have this guard, you have exclusive access to the underlying `T`. The guard
/// internally keeps a reference-counted pointer to the original `Mutex`, so even if the lock goes
/// away, the guard remains valid.
///
/// The lock is automatically released whenever the guard is dropped, at which point `lock` will
/// succeed yet again.
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct OwnedMutexGuard<T: ?Sized> {
lock: Arc<Mutex<T>>,
}
pub(crate) fn owned_guard_lock<T: ?Sized>(guard: &OwnedMutexGuard<T>) -> Arc<Mutex<T>> {
guard.lock.clone()
}
unsafe impl<T: ?Sized + Send + Sync> Sync for OwnedMutexGuard<T> {}
impl<T: ?Sized> Drop for OwnedMutexGuard<T> {
fn drop(&mut self) {
self.lock.s.release(1);
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for OwnedMutexGuard<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: ?Sized + fmt::Display> fmt::Display for OwnedMutexGuard<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<T: ?Sized> Deref for OwnedMutexGuard<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { &*self.lock.c.get() }
}
}
impl<T: ?Sized> DerefMut for OwnedMutexGuard<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *self.lock.c.get() }
}
}