Crate mdarray_linalg_lapack

Crate mdarray_linalg_lapack 

Source
Expand description
use mdarray::{DTensor, tensor};
use mdarray_linalg::prelude::*; // Imports only traits
use mdarray_linalg::eig::EigDecomp;
use mdarray_linalg::svd::SVDDecomp;

// Backends
use mdarray_linalg_lapack::Lapack;
use mdarray_linalg_lapack::SVDConfig;

let a = tensor![[1., 2.], [3., 4.]];

// ----- Eigenvalue decomposition -----
// Note: we must clone `a` here because decomposition routines destroy the input.
let bd = Lapack::new(); // Unlike Blas, Lapack is not a zero-sized backend so `new` must be called.
let EigDecomp {
    eigenvalues,
    right_eigenvectors,
    ..
} = bd.eig(&mut a.clone()).expect("Eigenvalue decomposition failed");

println!("Eigenvalues: {:?}", eigenvalues);
if let Some(vectors) = right_eigenvectors {
    println!("Right eigenvectors: {:?}", vectors);
}

// ----- Singular Value Decomposition (SVD) -----
let bd = Lapack::new().config_svd(SVDConfig::DivideConquer);
let SVDDecomp { s, u, vt } = bd.svd(&mut a.clone()).expect("SVD failed");
println!("Singular values: {:?}", s);
println!("Left singular vectors U: {:?}", u);
println!("Right singular vectors V^T: {:?}", vt);

// ----- QR Decomposition -----
let (m, n) = *a.shape();
let mut q = DTensor::<f64, 2>::zeros([m, m]);
let mut r = DTensor::<f64, 2>::zeros([m, n]);

let bd = Lapack::new();
bd.qr_overwrite(&mut a.clone(), &mut q, &mut r); //
println!("Q: {:?}", q);
println!("R: {:?}", r);

Modules§

eig
lu
qr
solve
svd

Structs§

Lapack

Enums§

LapackQRConfig
SVDConfig