1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
//! Work-stealing queue from the Tokio project.
//!
//! This file is nearly verbatim from the tokio project with only minor
//! modifications and additions. The only noteworthy modification is the
//! imposition of a limit on the number of tasks to be stolen, which was done to
//! match the behavior of `crossbeam-dequeue`.
//!
//! Copyright (c) 2022 Tokio Contributors.
//!
//! Permission is hereby granted, free of charge, to any
//! person obtaining a copy of this software and associated
//! documentation files (the "Software"), to deal in the
//! Software without restriction, including without
//! limitation the rights to use, copy, modify, merge,
//! publish, distribute, sublicense, and/or sell copies of
//! the Software, and to permit persons to whom the Software
//! is furnished to do so, subject to the following
//! conditions:
//!
//! The above copyright notice and this permission notice
//! shall be included in all copies or substantial portions
//! of the Software.
//!
//! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
//! ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//! TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
//! PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
//! SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
//! CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
//! OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
//! IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
//! DEALINGS IN THE SOFTWARE.
//! Run-queue structures to support a work-stealing scheduler
use std::mem::{self, MaybeUninit};
use std::ptr;
use std::sync::atomic::Ordering::{AcqRel, Acquire, Release};
use std::sync::Arc;
#[derive(Debug)]
pub(crate) struct UnsafeCell<T>(std::cell::UnsafeCell<T>);
impl<T> UnsafeCell<T> {
pub(crate) const fn new(data: T) -> UnsafeCell<T> {
UnsafeCell(std::cell::UnsafeCell::new(data))
}
pub(crate) fn with<R>(&self, f: impl FnOnce(*const T) -> R) -> R {
f(self.0.get())
}
pub(crate) fn with_mut<R>(&self, f: impl FnOnce(*mut T) -> R) -> R {
f(self.0.get())
}
}
// Use wider integers when possible to increase ABA resilience.
//
// See issue #5041: <https://github.com/tokio-rs/tokio/issues/5041>.
type UnsignedShort = u32;
type UnsignedLong = u64;
type AtomicUnsignedShort = crate::atomic::AtomicU32;
type AtomicUnsignedLong = std::sync::atomic::AtomicU64;
/// Producer handle. May only be used from a single thread.
pub struct Local<T: 'static> {
inner: Arc<Inner<T>>,
}
/// Consumer handle. May be used from many threads.
pub struct Steal<T: 'static>(Arc<Inner<T>>);
pub(crate) struct Inner<T: 'static> {
/// Concurrently updated by many threads.
///
/// Contains two `UnsignedShort` values. The LSB byte is the "real" head of
/// the queue. The `UnsignedShort` in the MSB is set by a stealer in process
/// of stealing values. It represents the first value being stolen in the
/// batch. The `UnsignedShort` indices are intentionally wider than strictly
/// required for buffer indexing in order to provide ABA mitigation and make
/// it possible to distinguish between full and empty buffers.
///
/// When both `UnsignedShort` values are the same, there is no active
/// stealer.
///
/// Tracking an in-progress stealer prevents a wrapping scenario.
head: AtomicUnsignedLong,
/// Only updated by producer thread but read by many threads.
tail: AtomicUnsignedShort,
/// Elements
buffer: Box<[UnsafeCell<MaybeUninit<T>>; LOCAL_QUEUE_CAPACITY]>,
}
unsafe impl<T> Send for Inner<T> {}
unsafe impl<T> Sync for Inner<T> {}
const LOCAL_QUEUE_CAPACITY: usize = 1024;
const MASK: usize = LOCAL_QUEUE_CAPACITY - 1;
// Constructing the fixed size array directly is very awkward. The only way to
// do it is to repeat `UnsafeCell::new(MaybeUninit::uninit())` 256 times, as
// the contents are not Copy. The trick with defining a const doesn't work for
// generic types.
fn make_fixed_size<T>(buffer: Box<[T]>) -> Box<[T; LOCAL_QUEUE_CAPACITY]> {
assert_eq!(buffer.len(), LOCAL_QUEUE_CAPACITY);
// safety: We check that the length is correct.
unsafe { Box::from_raw(Box::into_raw(buffer).cast()) }
}
/// Create a new local run-queue
pub fn local<T: 'static>() -> (Steal<T>, Local<T>) {
let mut buffer = Vec::with_capacity(LOCAL_QUEUE_CAPACITY);
for _ in 0..LOCAL_QUEUE_CAPACITY {
buffer.push(UnsafeCell::new(MaybeUninit::uninit()));
}
let inner = Arc::new(Inner {
head: AtomicUnsignedLong::new(0),
tail: AtomicUnsignedShort::new(0),
buffer: make_fixed_size(buffer.into_boxed_slice()),
});
let local = Local {
inner: inner.clone(),
};
let remote = Steal(inner);
(remote, local)
}
impl<T> Local<T> {
/// Returns true if the queue has entries that can be stolen.
pub fn is_stealable(&self) -> bool {
!self.inner.is_empty()
}
/// Returns false if there are any entries in the queue
///
/// Separate to is_stealable so that refactors of is_stealable to "protect"
/// some tasks from stealing won't affect this
pub fn has_tasks(&self) -> bool {
!self.inner.is_empty()
}
/// Pushes a task to the back of the local queue, skipping the LIFO slot.
pub fn push_back(&mut self, task: T) -> Result<(), T> {
let head = self.inner.head.load(Acquire);
let (steal, _real) = unpack(head);
// safety: this is the **only** thread that updates this cell.
let tail = unsafe { self.inner.tail.unsync_load() };
if tail.wrapping_sub(steal) >= LOCAL_QUEUE_CAPACITY as UnsignedShort {
// Concurrently stealing, this will free up capacity, so only
// push the task onto the inject queue
return Err(task);
}
// Map the position to a slot index.
let idx = tail as usize & MASK;
self.inner.buffer[idx].with_mut(|ptr| {
// Write the task to the slot
//
// Safety: There is only one producer and the above `if`
// condition ensures we don't touch a cell if there is a
// value, thus no consumer.
unsafe {
ptr::write((*ptr).as_mut_ptr(), task);
}
});
// Make the task available. Synchronizes with a load in
// `steal_into2`.
self.inner.tail.store(tail.wrapping_add(1), Release);
Ok(())
}
/// Pops a task from the local queue.
pub fn pop(&mut self) -> Option<T> {
let mut head = self.inner.head.load(Acquire);
let idx = loop {
let (steal, real) = unpack(head);
// safety: this is the **only** thread that updates this cell.
let tail = unsafe { self.inner.tail.unsync_load() };
if real == tail {
// queue is empty
return None;
}
let next_real = real.wrapping_add(1);
// If `steal == real` there are no concurrent stealers. Both `steal`
// and `real` are updated.
let next = if steal == real {
pack(next_real, next_real)
} else {
assert_ne!(steal, next_real);
pack(steal, next_real)
};
// Attempt to claim a task.
let res = self
.inner
.head
.compare_exchange(head, next, AcqRel, Acquire);
match res {
Ok(_) => break real as usize & MASK,
Err(actual) => {
head = actual;
}
}
};
Some(self.inner.buffer[idx].with(|ptr| unsafe { ptr::read(ptr).assume_init() }))
}
}
impl<T> Steal<T> {
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Steals half the tasks from self and place them into `dst`.
pub fn steal_into(&self, dst: &mut Local<T>) -> Option<T> {
// Safety: the caller is the only thread that mutates `dst.tail` and
// holds a mutable reference.
let dst_tail = unsafe { dst.inner.tail.unsync_load() };
// To the caller, `dst` may **look** empty but still have values
// contained in the buffer. If another thread is concurrently stealing
// from `dst` there may not be enough capacity to steal.
let (steal, _) = unpack(dst.inner.head.load(Acquire));
if dst_tail.wrapping_sub(steal) > LOCAL_QUEUE_CAPACITY as UnsignedShort / 2 {
// we *could* try to steal less here, but for simplicity, we're just
// going to abort.
return None;
}
// Steal the tasks into `dst`'s buffer. This does not yet expose the
// tasks in `dst`.
let mut n = self.steal_into2(dst, dst_tail);
if n == 0 {
// No tasks were stolen
return None;
}
// We are returning a task here
n -= 1;
let ret_pos = dst_tail.wrapping_add(n);
let ret_idx = ret_pos as usize & MASK;
// safety: the value was written as part of `steal_into2` and not
// exposed to stealers, so no other thread can access it.
let ret = dst.inner.buffer[ret_idx].with(|ptr| unsafe { ptr::read((*ptr).as_ptr()) });
if n == 0 {
// The `dst` queue is empty, but a single task was stolen
return Some(ret);
}
// Make the stolen items available to consumers
dst.inner.tail.store(dst_tail.wrapping_add(n), Release);
Some(ret)
}
// Steal tasks from `self`, placing them into `dst`. Returns the number of
// tasks that were stolen.
fn steal_into2(&self, dst: &mut Local<T>, dst_tail: UnsignedShort) -> UnsignedShort {
let mut prev_packed = self.0.head.load(Acquire);
let mut next_packed;
let n = loop {
let (src_head_steal, src_head_real) = unpack(prev_packed);
let src_tail = self.0.tail.load(Acquire);
// If these two do not match, another thread is concurrently
// stealing from the queue.
if src_head_steal != src_head_real {
return 0;
}
// Number of available tasks to steal
let n = src_tail.wrapping_sub(src_head_real);
let n = n - n / 2;
if n == 0 {
// No tasks available to steal
return 0;
}
// Update the real head index to acquire the tasks.
let steal_to = src_head_real.wrapping_add(n);
assert_ne!(src_head_steal, steal_to);
next_packed = pack(src_head_steal, steal_to);
// Claim all those tasks. This is done by incrementing the "real"
// head but not the steal. By doing this, no other thread is able to
// steal from this queue until the current thread completes.
let res = self
.0
.head
.compare_exchange(prev_packed, next_packed, AcqRel, Acquire);
match res {
Ok(_) => break n,
Err(actual) => {
prev_packed = actual;
std::hint::spin_loop();
}
}
};
assert!(
n <= LOCAL_QUEUE_CAPACITY as UnsignedShort / 2,
"actual = {n}"
);
let (first, _) = unpack(next_packed);
// Take all the tasks
for i in 0..n {
// Compute the positions
let src_pos = first.wrapping_add(i);
let dst_pos = dst_tail.wrapping_add(i);
// Map to slots
let src_idx = src_pos as usize & MASK;
let dst_idx = dst_pos as usize & MASK;
// Read the task
//
// safety: We acquired the task with the atomic exchange above.
let task = self.0.buffer[src_idx].with(|ptr| unsafe { ptr::read((*ptr).as_ptr()) });
// Write the task to the new slot
//
// safety: `dst` queue is empty and we are the only producer to
// this queue.
dst.inner.buffer[dst_idx]
.with_mut(|ptr| unsafe { ptr::write((*ptr).as_mut_ptr(), task) });
}
let mut prev_packed = next_packed;
// Update `src_head_steal` to match `src_head_real` signalling that the
// stealing routine is complete.
loop {
let head = unpack(prev_packed).1;
next_packed = pack(head, head);
let res = self
.0
.head
.compare_exchange(prev_packed, next_packed, AcqRel, Acquire);
match res {
Ok(_) => return n,
Err(actual) => {
let (actual_steal, actual_real) = unpack(actual);
assert_ne!(actual_steal, actual_real);
prev_packed = actual;
std::hint::spin_loop();
}
}
}
}
pub fn len(&self) -> usize {
self.0.len() as _
}
}
impl<T> Clone for Steal<T> {
fn clone(&self) -> Steal<T> {
Steal(self.0.clone())
}
}
impl<T> Drop for Local<T> {
fn drop(&mut self) {
if !std::thread::panicking() {
assert!(self.pop().is_none(), "queue not empty");
}
}
}
impl<T> Inner<T> {
fn len(&self) -> UnsignedShort {
let (_, head) = unpack(self.head.load(Acquire));
let tail = self.tail.load(Acquire);
tail.wrapping_sub(head)
}
fn is_empty(&self) -> bool {
self.len() == 0
}
}
/// Split the head value into the real head and the index a stealer is working
/// on.
fn unpack(n: UnsignedLong) -> (UnsignedShort, UnsignedShort) {
let real = n & UnsignedShort::MAX as UnsignedLong;
let steal = n >> (mem::size_of::<UnsignedShort>() * 8);
(steal as UnsignedShort, real as UnsignedShort)
}
/// Join the two head values
fn pack(steal: UnsignedShort, real: UnsignedShort) -> UnsignedLong {
(real as UnsignedLong) | ((steal as UnsignedLong) << (mem::size_of::<UnsignedShort>() * 8))
}
#[test]
fn test_local_queue_capacity() {
assert!(LOCAL_QUEUE_CAPACITY - 1 <= u16::MAX as usize);
}