[][src]Struct mavlink::common::SYS_STATUS_DATA

pub struct SYS_STATUS_DATA {
    pub onboard_control_sensors_present: MavSysStatusSensor,
    pub onboard_control_sensors_enabled: MavSysStatusSensor,
    pub onboard_control_sensors_health: MavSysStatusSensor,
    pub load: u16,
    pub voltage_battery: u16,
    pub current_battery: i16,
    pub drop_rate_comm: u16,
    pub errors_comm: u16,
    pub errors_count1: u16,
    pub errors_count2: u16,
    pub errors_count3: u16,
    pub errors_count4: u16,
    pub battery_remaining: i8,
}

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

Fields

onboard_control_sensors_present: MavSysStatusSensor

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

onboard_control_sensors_enabled: MavSysStatusSensor

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

onboard_control_sensors_health: MavSysStatusSensor

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

load: u16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

voltage_battery: u16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

current_battery: i16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

drop_rate_comm: u16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

errors_comm: u16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

errors_count1: u16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

errors_count2: u16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

errors_count3: u16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

errors_count4: u16

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

battery_remaining: i8

id: 1 The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows whether the system is currently active or not and if an emergency occurred. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occurred it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout..

Implementations

impl SYS_STATUS_DATA[src]

pub const ENCODED_LEN: usize[src]

pub fn deser(
    version: MavlinkVersion,
    _input: &[u8]
) -> Result<Self, ParserError>
[src]

pub fn ser(&self) -> Vec<u8>[src]

Trait Implementations

impl Clone for SYS_STATUS_DATA[src]

impl Debug for SYS_STATUS_DATA[src]

impl Default for SYS_STATUS_DATA[src]

impl<'de> Deserialize<'de> for SYS_STATUS_DATA[src]

impl PartialEq<SYS_STATUS_DATA> for SYS_STATUS_DATA[src]

impl Serialize for SYS_STATUS_DATA[src]

impl StructuralPartialEq for SYS_STATUS_DATA[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> DeserializeOwned for T where
    T: for<'de> Deserialize<'de>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.