1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
// Copyright 2020 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::{
    collections::{btree_map::Iter, BTreeMap},
    convert::TryFrom,
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc,
    },
};

use ruma::{
    encryption::{CrossSigningKey, KeyUsage},
    DeviceKeyId, UserId,
};
use serde::{Deserialize, Serialize};
use serde_json::to_value;

use super::{atomic_bool_deserializer, atomic_bool_serializer};
#[cfg(test)]
use crate::olm::PrivateCrossSigningIdentity;
use crate::{error::SignatureError, olm::Utility, ReadOnlyDevice};

/// Wrapper for a cross signing key marking it as the master key.
///
/// Master keys are used to sign other cross signing keys, the self signing and
/// user signing keys of an user will be signed by their master key.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct MasterPubkey(Arc<CrossSigningKey>);

/// Wrapper for a cross signing key marking it as a self signing key.
///
/// Self signing keys are used to sign the user's own devices.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct SelfSigningPubkey(Arc<CrossSigningKey>);

/// Wrapper for a cross signing key marking it as a user signing key.
///
/// User signing keys are used to sign the master keys of other users.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct UserSigningPubkey(Arc<CrossSigningKey>);

impl PartialEq for MasterPubkey {
    fn eq(&self, other: &MasterPubkey) -> bool {
        self.0.user_id == other.0.user_id && self.0.keys == other.0.keys
    }
}

impl PartialEq for SelfSigningPubkey {
    fn eq(&self, other: &SelfSigningPubkey) -> bool {
        self.0.user_id == other.0.user_id && self.0.keys == other.0.keys
    }
}

impl PartialEq for UserSigningPubkey {
    fn eq(&self, other: &UserSigningPubkey) -> bool {
        self.0.user_id == other.0.user_id && self.0.keys == other.0.keys
    }
}

impl From<CrossSigningKey> for MasterPubkey {
    fn from(key: CrossSigningKey) -> Self {
        Self(Arc::new(key))
    }
}

impl From<CrossSigningKey> for SelfSigningPubkey {
    fn from(key: CrossSigningKey) -> Self {
        Self(Arc::new(key))
    }
}

impl From<CrossSigningKey> for UserSigningPubkey {
    fn from(key: CrossSigningKey) -> Self {
        Self(Arc::new(key))
    }
}

#[allow(clippy::from_over_into)]
impl Into<CrossSigningKey> for MasterPubkey {
    fn into(self) -> CrossSigningKey {
        self.0.as_ref().clone()
    }
}

#[allow(clippy::from_over_into)]
impl Into<CrossSigningKey> for UserSigningPubkey {
    fn into(self) -> CrossSigningKey {
        self.0.as_ref().clone()
    }
}

#[allow(clippy::from_over_into)]
impl Into<CrossSigningKey> for SelfSigningPubkey {
    fn into(self) -> CrossSigningKey {
        self.0.as_ref().clone()
    }
}

impl AsRef<CrossSigningKey> for MasterPubkey {
    fn as_ref(&self) -> &CrossSigningKey {
        &self.0
    }
}

impl AsRef<CrossSigningKey> for SelfSigningPubkey {
    fn as_ref(&self) -> &CrossSigningKey {
        &self.0
    }
}

impl AsRef<CrossSigningKey> for UserSigningPubkey {
    fn as_ref(&self) -> &CrossSigningKey {
        &self.0
    }
}

impl From<&CrossSigningKey> for MasterPubkey {
    fn from(key: &CrossSigningKey) -> Self {
        Self(Arc::new(key.clone()))
    }
}

impl From<&CrossSigningKey> for SelfSigningPubkey {
    fn from(key: &CrossSigningKey) -> Self {
        Self(Arc::new(key.clone()))
    }
}

impl From<&CrossSigningKey> for UserSigningPubkey {
    fn from(key: &CrossSigningKey) -> Self {
        Self(Arc::new(key.clone()))
    }
}

impl<'a> From<&'a SelfSigningPubkey> for CrossSigningSubKeys<'a> {
    fn from(key: &'a SelfSigningPubkey) -> Self {
        CrossSigningSubKeys::SelfSigning(key)
    }
}

impl<'a> From<&'a UserSigningPubkey> for CrossSigningSubKeys<'a> {
    fn from(key: &'a UserSigningPubkey) -> Self {
        CrossSigningSubKeys::UserSigning(key)
    }
}

/// Enum over the cross signing sub-keys.
pub(crate) enum CrossSigningSubKeys<'a> {
    /// The self signing subkey.
    SelfSigning(&'a SelfSigningPubkey),
    /// The user signing subkey.
    UserSigning(&'a UserSigningPubkey),
}

impl<'a> CrossSigningSubKeys<'a> {
    /// Get the id of the user that owns this cross signing subkey.
    fn user_id(&self) -> &UserId {
        match self {
            CrossSigningSubKeys::SelfSigning(key) => &key.0.user_id,
            CrossSigningSubKeys::UserSigning(key) => &key.0.user_id,
        }
    }

    /// Get the `CrossSigningKey` from an sub-keys enum
    pub(crate) fn cross_signing_key(&self) -> &CrossSigningKey {
        match self {
            CrossSigningSubKeys::SelfSigning(key) => &key.0,
            CrossSigningSubKeys::UserSigning(key) => &key.0,
        }
    }
}

impl MasterPubkey {
    /// Get the user id of the master key's owner.
    pub fn user_id(&self) -> &UserId {
        &self.0.user_id
    }

    /// Get the keys map of containing the master keys.
    pub fn keys(&self) -> &BTreeMap<String, String> {
        &self.0.keys
    }

    /// Get the list of `KeyUsage` that is set for this key.
    pub fn usage(&self) -> &[KeyUsage] {
        &self.0.usage
    }

    /// Get the signatures map of this cross signing key.
    pub fn signatures(&self) -> &BTreeMap<UserId, BTreeMap<String, String>> {
        &self.0.signatures
    }

    /// Get the master key with the given key id.
    ///
    /// # Arguments
    ///
    /// * `key_id` - The id of the key that should be fetched.
    pub fn get_key(&self, key_id: &DeviceKeyId) -> Option<&str> {
        self.0.keys.get(key_id.as_str()).map(|k| k.as_str())
    }

    /// Get the first available master key.
    ///
    /// There's usually only a single master key so this will usually fetch the
    /// only key.
    pub fn get_first_key(&self) -> Option<&str> {
        self.0.keys.values().map(|k| k.as_str()).next()
    }

    /// Check if the given cross signing sub-key is signed by the master key.
    ///
    /// # Arguments
    ///
    /// * `subkey` - The subkey that should be checked for a valid signature.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub(crate) fn verify_subkey<'a>(
        &self,
        subkey: impl Into<CrossSigningSubKeys<'a>>,
    ) -> Result<(), SignatureError> {
        let (key_id, key) = self.0.keys.iter().next().ok_or(SignatureError::MissingSigningKey)?;

        let key_id = DeviceKeyId::try_from(key_id.as_str())?;

        // FIXME `KeyUsage is missing PartialEq.
        // if self.0.usage.contains(&KeyUsage::Master) {
        //     return Err(SignatureError::MissingSigningKey);
        // }
        let subkey: CrossSigningSubKeys = subkey.into();

        if &self.0.user_id != subkey.user_id() {
            return Err(SignatureError::UserIdMissmatch);
        }

        let utility = Utility::new();
        utility.verify_json(
            &self.0.user_id,
            &key_id,
            key,
            &mut to_value(subkey.cross_signing_key()).map_err(|_| SignatureError::NotAnObject)?,
        )
    }
}

impl<'a> IntoIterator for &'a MasterPubkey {
    type Item = (&'a String, &'a String);
    type IntoIter = Iter<'a, String, String>;

    fn into_iter(self) -> Self::IntoIter {
        self.keys().iter()
    }
}

impl UserSigningPubkey {
    /// Get the user id of the user signing key's owner.
    pub fn user_id(&self) -> &UserId {
        &self.0.user_id
    }

    /// Get the keys map of containing the user signing keys.
    pub fn keys(&self) -> &BTreeMap<String, String> {
        &self.0.keys
    }

    /// Check if the given master key is signed by this user signing key.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The master key that should be checked for a valid
    /// signature.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub(crate) fn verify_master_key(
        &self,
        master_key: &MasterPubkey,
    ) -> Result<(), SignatureError> {
        let (key_id, key) = self.0.keys.iter().next().ok_or(SignatureError::MissingSigningKey)?;

        // TODO check that the usage is OK.

        let utility = Utility::new();
        utility.verify_json(
            &self.0.user_id,
            &DeviceKeyId::try_from(key_id.as_str())?,
            key,
            &mut to_value(&*master_key.0).map_err(|_| SignatureError::NotAnObject)?,
        )
    }
}

impl<'a> IntoIterator for &'a UserSigningPubkey {
    type Item = (&'a String, &'a String);
    type IntoIter = Iter<'a, String, String>;

    fn into_iter(self) -> Self::IntoIter {
        self.keys().iter()
    }
}

impl SelfSigningPubkey {
    /// Get the user id of the self signing key's owner.
    pub fn user_id(&self) -> &UserId {
        &self.0.user_id
    }

    /// Get the keys map of containing the self signing keys.
    pub fn keys(&self) -> &BTreeMap<String, String> {
        &self.0.keys
    }

    /// Check if the given device is signed by this self signing key.
    ///
    /// # Arguments
    ///
    /// * `device` - The device that should be checked for a valid signature.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub(crate) fn verify_device(&self, device: &ReadOnlyDevice) -> Result<(), SignatureError> {
        let (key_id, key) = self.0.keys.iter().next().ok_or(SignatureError::MissingSigningKey)?;

        // TODO check that the usage is OK.

        let utility = Utility::new();
        utility.verify_json(
            &self.0.user_id,
            &DeviceKeyId::try_from(key_id.as_str())?,
            key,
            &mut device.as_signature_message(),
        )
    }
}

impl<'a> IntoIterator for &'a SelfSigningPubkey {
    type Item = (&'a String, &'a String);
    type IntoIter = Iter<'a, String, String>;

    fn into_iter(self) -> Self::IntoIter {
        self.keys().iter()
    }
}

/// Enum over the different user identity types we can have.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum UserIdentities {
    /// Our own user identity.
    Own(OwnUserIdentity),
    /// Identities of other users.
    Other(UserIdentity),
}

impl From<OwnUserIdentity> for UserIdentities {
    fn from(identity: OwnUserIdentity) -> Self {
        UserIdentities::Own(identity)
    }
}

impl From<UserIdentity> for UserIdentities {
    fn from(identity: UserIdentity) -> Self {
        UserIdentities::Other(identity)
    }
}

impl UserIdentities {
    /// The unique user id of this identity.
    pub fn user_id(&self) -> &UserId {
        match self {
            UserIdentities::Own(i) => i.user_id(),
            UserIdentities::Other(i) => i.user_id(),
        }
    }

    /// Get the master key of the identity.
    pub fn master_key(&self) -> &MasterPubkey {
        match self {
            UserIdentities::Own(i) => i.master_key(),
            UserIdentities::Other(i) => i.master_key(),
        }
    }

    /// Get the self-signing key of the identity.
    pub fn self_signing_key(&self) -> &SelfSigningPubkey {
        match self {
            UserIdentities::Own(i) => &i.self_signing_key,
            UserIdentities::Other(i) => &i.self_signing_key,
        }
    }

    /// Get the user-signing key of the identity, this is only present for our
    /// own user identity..
    pub fn user_signing_key(&self) -> Option<&UserSigningPubkey> {
        match self {
            UserIdentities::Own(i) => Some(&i.user_signing_key),
            UserIdentities::Other(_) => None,
        }
    }

    /// Destructure the enum into an `OwnUserIdentity` if it's of the correct
    /// type.
    pub fn own(&self) -> Option<&OwnUserIdentity> {
        match self {
            UserIdentities::Own(i) => Some(i),
            _ => None,
        }
    }

    /// Destructure the enum into an `UserIdentity` if it's of the correct
    /// type.
    pub fn other(&self) -> Option<&UserIdentity> {
        match self {
            UserIdentities::Other(i) => Some(i),
            _ => None,
        }
    }
}

impl PartialEq for UserIdentities {
    fn eq(&self, other: &UserIdentities) -> bool {
        self.user_id() == other.user_id()
    }
}

/// Struct representing a cross signing identity of a user.
///
/// This is the user identity of a user that isn't our own. Other users will
/// only contain a master key and a self signing key, meaning that only device
/// signatures can be checked with this identity.
#[derive(Debug, Clone, Deserialize, Serialize)]
pub struct UserIdentity {
    user_id: Arc<UserId>,
    pub(crate) master_key: MasterPubkey,
    self_signing_key: SelfSigningPubkey,
}

impl UserIdentity {
    /// Create a new user identity with the given master and self signing key.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The master key of the user identity.
    ///
    /// * `self signing key` - The self signing key of user identity.
    ///
    /// Returns a `SignatureError` if the self signing key fails to be correctly
    /// verified by the given master key.
    pub fn new(
        master_key: MasterPubkey,
        self_signing_key: SelfSigningPubkey,
    ) -> Result<Self, SignatureError> {
        master_key.verify_subkey(&self_signing_key)?;

        Ok(Self { user_id: Arc::new(master_key.0.user_id.clone()), master_key, self_signing_key })
    }

    #[cfg(test)]
    pub async fn from_private(identity: &PrivateCrossSigningIdentity) -> Self {
        let master_key = identity.master_key.lock().await.as_ref().unwrap().public_key.clone();
        let self_signing_key =
            identity.self_signing_key.lock().await.as_ref().unwrap().public_key.clone();

        Self { user_id: Arc::new(identity.user_id().clone()), master_key, self_signing_key }
    }

    /// Get the user id of this identity.
    pub fn user_id(&self) -> &UserId {
        &self.user_id
    }

    /// Get the public master key of the identity.
    pub fn master_key(&self) -> &MasterPubkey {
        &self.master_key
    }

    /// Get the public self-signing key of the identity.
    pub fn self_signing_key(&self) -> &SelfSigningPubkey {
        &self.self_signing_key
    }

    /// Update the identity with a new master key and self signing key.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The new master key of the user identity.
    ///
    /// * `self_signing_key` - The new self signing key of user identity.
    ///
    /// Returns a `SignatureError` if we failed to update the identity.
    pub fn update(
        &mut self,
        master_key: MasterPubkey,
        self_signing_key: SelfSigningPubkey,
    ) -> Result<(), SignatureError> {
        master_key.verify_subkey(&self_signing_key)?;

        self.master_key = master_key;
        self.self_signing_key = self_signing_key;

        Ok(())
    }

    /// Check if the given device has been signed by this identity.
    ///
    /// The user_id of the user identity and the user_id of the device need to
    /// match for the signature check to succeed as we don't trust users to sign
    /// devices of other users.
    ///
    /// # Arguments
    ///
    /// * `device` - The device that should be checked for a valid signature.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub fn is_device_signed(&self, device: &ReadOnlyDevice) -> Result<(), SignatureError> {
        if self.user_id() != device.user_id() {
            return Err(SignatureError::UserIdMissmatch);
        }

        self.self_signing_key.verify_device(device)
    }
}

/// Struct representing a cross signing identity of our own user.
///
/// This is the user identity of our own user. This user identity will contain a
/// master key, self signing key as well as a user signing key.
///
/// This identity can verify other identities as well as devices belonging to
/// the identity.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct OwnUserIdentity {
    user_id: Arc<UserId>,
    master_key: MasterPubkey,
    self_signing_key: SelfSigningPubkey,
    user_signing_key: UserSigningPubkey,
    #[serde(
        serialize_with = "atomic_bool_serializer",
        deserialize_with = "atomic_bool_deserializer"
    )]
    verified: Arc<AtomicBool>,
}

impl OwnUserIdentity {
    /// Create a new own user identity with the given master, self signing, and
    /// user signing key.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The master key of the user identity.
    ///
    /// * `self_signing_key` - The self signing key of user identity.
    ///
    /// * `user_signing_key` - The user signing key of user identity.
    ///
    /// Returns a `SignatureError` if the self signing key fails to be correctly
    /// verified by the given master key.
    pub fn new(
        master_key: MasterPubkey,
        self_signing_key: SelfSigningPubkey,
        user_signing_key: UserSigningPubkey,
    ) -> Result<Self, SignatureError> {
        master_key.verify_subkey(&self_signing_key)?;
        master_key.verify_subkey(&user_signing_key)?;

        Ok(Self {
            user_id: Arc::new(master_key.0.user_id.clone()),
            master_key,
            self_signing_key,
            user_signing_key,
            verified: Arc::new(AtomicBool::new(false)),
        })
    }

    /// Get the user id of this identity.
    pub fn user_id(&self) -> &UserId {
        &self.user_id
    }

    /// Get the public master key of the identity.
    pub fn master_key(&self) -> &MasterPubkey {
        &self.master_key
    }

    /// Get the public self-signing key of the identity.
    pub fn self_signing_key(&self) -> &SelfSigningPubkey {
        &self.self_signing_key
    }

    /// Get the public user-signing key of the identity.
    pub fn user_signing_key(&self) -> &UserSigningPubkey {
        &self.user_signing_key
    }

    /// Check if the given identity has been signed by this identity.
    ///
    /// # Arguments
    ///
    /// * `identity` - The identity of another user that we want to check if
    /// it's has been signed.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub fn is_identity_signed(&self, identity: &UserIdentity) -> Result<(), SignatureError> {
        self.user_signing_key.verify_master_key(&identity.master_key)
    }

    /// Check if the given device has been signed by this identity.
    ///
    /// Only devices of our own user should be checked with this method, if a
    /// device of a different user is given the signature check will always fail
    /// even if a valid signature exists.
    ///
    /// # Arguments
    ///
    /// * `device` - The device that should be checked for a valid signature.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub fn is_device_signed(&self, device: &ReadOnlyDevice) -> Result<(), SignatureError> {
        if self.user_id() != device.user_id() {
            return Err(SignatureError::UserIdMissmatch);
        }

        self.self_signing_key.verify_device(device)
    }

    /// Mark our identity as verified.
    pub fn mark_as_verified(&self) {
        self.verified.store(true, Ordering::SeqCst)
    }

    /// Check if our identity is verified.
    pub fn is_verified(&self) -> bool {
        self.verified.load(Ordering::SeqCst)
    }

    /// Update the identity with a new master key and self signing key.
    ///
    /// Note: This will reset the verification state if the master keys differ.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The new master key of the user identity.
    ///
    /// * `self_signing_key` - The new self signing key of user identity.
    ///
    /// * `user_signing_key` - The new user signing key of user identity.
    ///
    /// Returns a `SignatureError` if we failed to update the identity.
    pub fn update(
        &mut self,
        master_key: MasterPubkey,
        self_signing_key: SelfSigningPubkey,
        user_signing_key: UserSigningPubkey,
    ) -> Result<(), SignatureError> {
        master_key.verify_subkey(&self_signing_key)?;
        master_key.verify_subkey(&user_signing_key)?;

        self.self_signing_key = self_signing_key;
        self.user_signing_key = user_signing_key;

        if self.master_key != master_key {
            self.verified.store(false, Ordering::SeqCst)
        }

        self.master_key = master_key;

        Ok(())
    }
}

#[cfg(test)]
pub(crate) mod test {
    use std::{convert::TryFrom, sync::Arc};

    use matrix_sdk_common::locks::Mutex;
    use matrix_sdk_test::async_test;
    use ruma::{api::client::r0::keys::get_keys::Response as KeyQueryResponse, user_id};

    use super::{OwnUserIdentity, UserIdentities, UserIdentity};
    use crate::{
        identities::{
            manager::test::{other_key_query, own_key_query},
            Device, ReadOnlyDevice,
        },
        olm::{PrivateCrossSigningIdentity, ReadOnlyAccount},
        store::MemoryStore,
        verification::VerificationMachine,
    };

    fn device(response: &KeyQueryResponse) -> (ReadOnlyDevice, ReadOnlyDevice) {
        let mut devices = response.device_keys.values().next().unwrap().values();
        let first = ReadOnlyDevice::try_from(devices.next().unwrap()).unwrap();
        let second = ReadOnlyDevice::try_from(devices.next().unwrap()).unwrap();
        (first, second)
    }

    fn own_identity(response: &KeyQueryResponse) -> OwnUserIdentity {
        let user_id = user_id!("@example:localhost");

        let master_key = response.master_keys.get(&user_id).unwrap();
        let user_signing = response.user_signing_keys.get(&user_id).unwrap();
        let self_signing = response.self_signing_keys.get(&user_id).unwrap();

        OwnUserIdentity::new(master_key.into(), self_signing.into(), user_signing.into()).unwrap()
    }

    pub(crate) fn get_own_identity() -> OwnUserIdentity {
        own_identity(&own_key_query())
    }

    pub(crate) fn get_other_identity() -> UserIdentity {
        let user_id = user_id!("@example2:localhost");
        let response = other_key_query();

        let master_key = response.master_keys.get(&user_id).unwrap();
        let self_signing = response.self_signing_keys.get(&user_id).unwrap();

        UserIdentity::new(master_key.into(), self_signing.into()).unwrap()
    }

    #[test]
    fn own_identity_create() {
        let user_id = user_id!("@example:localhost");
        let response = own_key_query();

        let master_key = response.master_keys.get(&user_id).unwrap();
        let user_signing = response.user_signing_keys.get(&user_id).unwrap();
        let self_signing = response.self_signing_keys.get(&user_id).unwrap();

        OwnUserIdentity::new(master_key.into(), self_signing.into(), user_signing.into()).unwrap();
    }

    #[test]
    fn other_identity_create() {
        get_other_identity();
    }

    #[test]
    fn own_identity_check_signatures() {
        let response = own_key_query();
        let identity = get_own_identity();
        let (first, second) = device(&response);

        assert!(identity.is_device_signed(&first).is_err());
        assert!(identity.is_device_signed(&second).is_ok());

        let private_identity =
            Arc::new(Mutex::new(PrivateCrossSigningIdentity::empty(second.user_id().clone())));
        let verification_machine = VerificationMachine::new(
            ReadOnlyAccount::new(second.user_id(), second.device_id()),
            private_identity.clone(),
            Arc::new(MemoryStore::new()),
        );

        let first = Device {
            inner: first,
            verification_machine: verification_machine.clone(),
            private_identity: private_identity.clone(),
            own_identity: Some(identity.clone()),
            device_owner_identity: Some(UserIdentities::Own(identity.clone())),
        };

        let second = Device {
            inner: second,
            verification_machine,
            private_identity,
            own_identity: Some(identity.clone()),
            device_owner_identity: Some(UserIdentities::Own(identity.clone())),
        };

        assert!(!second.trust_state());
        assert!(!second.is_trusted());

        assert!(!first.trust_state());
        assert!(!first.is_trusted());

        identity.mark_as_verified();
        assert!(second.trust_state());
        assert!(!first.trust_state());
    }

    #[async_test]
    async fn own_device_with_private_identity() {
        let response = own_key_query();
        let (_, device) = device(&response);

        let account = ReadOnlyAccount::new(device.user_id(), device.device_id());
        let (identity, _, _) = PrivateCrossSigningIdentity::new_with_account(&account).await;

        let id = Arc::new(Mutex::new(identity.clone()));

        let verification_machine = VerificationMachine::new(
            ReadOnlyAccount::new(device.user_id(), device.device_id()),
            id.clone(),
            Arc::new(MemoryStore::new()),
        );

        let public_identity = identity.to_public_identity().await.unwrap();

        let mut device = Device {
            inner: device,
            verification_machine: verification_machine.clone(),
            private_identity: id.clone(),
            own_identity: Some(public_identity.clone()),
            device_owner_identity: Some(public_identity.clone().into()),
        };

        assert!(!device.trust_state());

        let mut device_keys = device.as_device_keys();

        identity.sign_device_keys(&mut device_keys).await.unwrap();
        device.inner.signatures = Arc::new(device_keys.signatures);
        assert!(device.trust_state());
    }
}