1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
//! This is a crate for very basic matrix operations
//! with any type that implement [`Add`], [`Sub`], [`Mul`],
//! [`Zero`], [`Neg`] and [`Copy`]. Additional properties might be
//! needed for certain operations.
//!
//! I created it mostly to learn using generic types
//! and traits.
//!
//! Sayantan Santra (2023)
use num::{
traits::{One, Zero},
Integer,
};
use std::{
fmt::{self, Debug, Display, Formatter},
ops::{Add, Div, Mul, Neg, Sub},
result::Result,
};
mod tests;
/// Trait a type must satisfy to be element of a matrix. This is
/// mostly to reduce writing trait bounds afterwards.
pub trait ToMatrix:
Mul<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Zero<Output = Self>
+ Neg<Output = Self>
+ Copy
{
}
/// Blanket implementation for [`ToMatrix`] for any type that satisfies its bounds.
impl<T> ToMatrix for T where
T: Mul<Output = T>
+ Add<Output = T>
+ Sub<Output = T>
+ Zero<Output = T>
+ Neg<Output = T>
+ Copy
{
}
/// A generic matrix struct (over any type with [`Add`], [`Sub`], [`Mul`],
/// [`Zero`], [`Neg`] and [`Copy`] implemented).
/// Look at [`from`](Self::from()) to see examples.
#[derive(PartialEq, Debug, Clone)]
pub struct Matrix<T: ToMatrix> {
entries: Vec<Vec<T>>,
}
impl<T: ToMatrix> Matrix<T> {
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
/// It'll throw an error if all the given rows aren't of the same size.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2, 3], vec![4, 5, 6]]);
/// ```
/// will create the following matrix:
/// ⌈1, 2, 3⌉
/// ⌊4, 5, 6⌋
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, &'static str> {
let mut equal_rows = true;
let row_len = entries[0].len();
for row in &entries {
if row_len != row.len() {
equal_rows = false;
break;
}
}
if equal_rows {
Ok(Matrix { entries })
} else {
Err("Unequal rows.")
}
}
/// Returns the height of a matrix.
pub fn height(&self) -> usize {
self.entries.len()
}
/// Returns the width of a matrix.
pub fn width(&self) -> usize {
self.entries[0].len()
}
/// Returns the transpose of a matrix.
pub fn transpose(&self) -> Self {
let mut out = Vec::new();
for i in 0..self.width() {
let mut column = Vec::new();
for row in &self.entries {
column.push(row[i]);
}
out.push(column)
}
Matrix { entries: out }
}
/// Returns a reference to the rows of a matrix as `&Vec<Vec<T>>`.
pub fn rows(&self) -> &Vec<Vec<T>> {
&self.entries
}
/// Return the columns of a matrix as `Vec<Vec<T>>`.
pub fn columns(&self) -> Vec<Vec<T>> {
self.transpose().entries
}
/// Return true if a matrix is square and false otherwise.
pub fn is_square(&self) -> bool {
self.height() == self.width()
}
/// Returns a matrix after removing the provided row and column from it.
/// Note: Row and column numbers are 0-indexed.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
/// let n = Matrix::from(vec![vec![5, 6]]).unwrap();
/// assert_eq!(m.submatrix(0, 0), n);
/// ```
pub fn submatrix(&self, row: usize, col: usize) -> Self {
let mut out = Vec::new();
for (m, row_iter) in self.entries.iter().enumerate() {
if m == row {
continue;
}
let mut new_row = Vec::new();
for (n, entry) in row_iter.iter().enumerate() {
if n != col {
new_row.push(*entry);
}
}
out.push(new_row);
}
Matrix { entries: out }
}
/// Returns the determinant of a square matrix.
/// This uses basic recursive algorithm using cofactor-minor.
/// See [`det_in_field`](Self::det_in_field()) for faster determinant calculation in fields.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2], vec![3, 4]]).unwrap();
/// assert_eq!(m.det(), Ok(-2));
/// ```
pub fn det(&self) -> Result<T, &'static str> {
if self.is_square() {
// It's a recursive algorithm using minors.
// TODO: Implement a faster algorithm.
let out = if self.width() == 1 {
self.entries[0][0]
} else {
// Add the minors multiplied by cofactors.
let n = 0..self.width();
let mut out = T::zero();
for i in n {
if i.is_even() {
out = out + (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
} else {
out = out - (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
}
}
out
};
Ok(out)
} else {
Err("Provided matrix isn't square.")
}
}
/// Returns the determinant of a square matrix over a field i.e. needs [`One`] and [`Div`] traits.
/// See [`det`](Self::det()) for determinants in rings.
/// This method uses row reduction as is much faster.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap();
/// assert_eq!(m.det_in_field(), Ok(-2.0));
/// ```
pub fn det_in_field(&self) -> Result<T, &'static str>
where
T: One,
T: PartialEq,
T: Div<Output = T>,
{
if self.is_square() {
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let mut multiplier = T::one();
let h = self.height();
let w = self.width();
for i in 0..(h - 1) {
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i] != T::zero() {
rows.swap(i, j);
multiplier = -multiplier;
zero_column = false;
break;
}
}
if zero_column {
return Ok(T::zero());
}
}
for j in (i + 1)..h {
let ratio = rows[j][i] / rows[i][i];
for k in i..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
}
}
for (i, row) in rows.iter().enumerate() {
multiplier = multiplier * row[i];
}
Ok(multiplier)
} else {
Err("Provided matrix isn't square.")
}
}
/// Returns the row echelon form of a matrix over a field i.e. needs the [`Div`] trait.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![3.0, 4.0, 5.0]]).unwrap();
/// let n = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, -2.0, -4.0]]).unwrap();
/// assert_eq!(m.row_echelon(), n);
/// ```
pub fn row_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let mut offset = 0;
let h = self.height();
let w = self.width();
for i in 0..(h - 1) {
// Check if all the rows below are 0
if i + offset >= self.width() {
break;
}
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i + offset] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i + offset] != T::zero() {
rows.swap(i, j);
zero_column = false;
break;
}
}
if zero_column {
offset += 1;
}
}
for j in (i + 1)..h {
let ratio = rows[j][i + offset] / rows[i][i + offset];
for k in (i + offset)..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
}
}
Matrix { entries: rows }
}
/// Returns the column echelon form of a matrix over a field i.e. needs the [`Div`] trait.
/// It's just the transpose of the row echelon form of the transpose.
/// See [`row_echelon`](Self::row_echelon()) and [`transpose`](Self::transpose()).
pub fn column_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
self.transpose().row_echelon().transpose()
}
/// Returns the reduced row echelon form of a matrix over a field i.e. needs the `Div`] trait.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![3.0, 4.0, 5.0]]).unwrap();
/// let n = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// assert_eq!(m.reduced_row_echelon(), n);
/// ```
pub fn reduced_row_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
let mut echelon = self.row_echelon();
let mut offset = 0;
for row in &mut echelon.entries {
while row[offset] == T::zero() {
offset += 1;
}
let divisor = row[offset];
for entry in row.iter_mut().skip(offset) {
*entry = *entry / divisor;
}
offset += 1;
}
echelon
}
/// Creates a zero matrix of a given size.
pub fn zero(height: usize, width: usize) -> Self {
let mut out = Vec::new();
for _ in 0..height {
let mut new_row = Vec::new();
for _ in 0..width {
new_row.push(T::zero());
}
out.push(new_row);
}
Matrix { entries: out }
}
/// Creates an identity matrix of a given size.
/// It needs the [`One`] trait.
pub fn identity(size: usize) -> Self
where
T: One,
{
let mut out = Matrix::zero(size, size);
for (i, row) in out.entries.iter_mut().enumerate() {
row[i] = T::one();
}
out
}
/// Returns the trace of a square matrix.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2], vec![3, 4]]).unwrap();
/// assert_eq!(m.trace(), Ok(5));
/// ```
pub fn trace(self) -> Result<T, &'static str> {
if self.is_square() {
let mut out = self.entries[0][0];
for i in 1..self.height() {
out = out + self.entries[i][i];
}
Ok(out)
} else {
Err("Provided matrix isn't square.")
}
}
/// Returns a diagonal matrix with a given diagonal.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::diagonal_matrix(vec![1, 2, 3]);
/// let n = Matrix::from(vec![vec![1, 0, 0], vec![0, 2, 0], vec![0, 0, 3]]).unwrap();
///
/// assert_eq!(m, n);
/// ```
pub fn diagonal_matrix(diag: Vec<T>) -> Self {
let size = diag.len();
let mut out = Matrix::zero(size, size);
for (i, row) in out.entries.iter_mut().enumerate() {
row[i] = diag[i];
}
out
}
/// Multiplies all entries of a matrix by a scalar.
/// Note that it modifies the supplied matrix.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let mut m = Matrix::from(vec![vec![1, 2, 0], vec![0, 2, 5], vec![0, 0, 3]]).unwrap();
/// let n = Matrix::from(vec![vec![2, 4, 0], vec![0, 4, 10], vec![0, 0, 6]]).unwrap();
/// m.mul_scalar(2);
///
/// assert_eq!(m, n);
/// ```
pub fn mul_scalar(&mut self, scalar: T) {
for row in &mut self.entries {
for entry in row {
*entry = *entry * scalar;
}
}
}
/// Returns the inverse of a square matrix. Throws an error if the matrix isn't square.
/// /// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap();
/// let n = Matrix::from(vec![vec![-2.0, 1.0], vec![1.5, -0.5]]).unwrap();
/// assert_eq!(m.inverse(), Ok(n));
/// ```
pub fn inverse(&self) -> Result<Self, &'static str>
where
T: Div<Output = T>,
T: One,
T: PartialEq,
{
if self.is_square() {
// We'll use the basic technique of using an augmented matrix (in essence)
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let h = self.height();
let w = self.width();
let mut out = Self::identity(h).entries;
// First we get row echelon form
for i in 0..(h - 1) {
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i] != T::zero() {
rows.swap(i, j);
out.swap(i, j);
zero_column = false;
break;
}
}
if zero_column {
return Err("Provided matrix is singular.");
}
}
for j in (i + 1)..h {
let ratio = rows[j][i] / rows[i][i];
for k in i..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
// We cannot skip entries here as they might not be 0
for k in 0..w {
out[j][k] = out[j][k] - out[i][k] * ratio;
}
}
}
// Then we reduce the rows
for i in 0..h {
if rows[i][i] == T::zero() {
return Err("Provided matrix is singular.");
}
let divisor = rows[i][i];
for entry in rows[i].iter_mut().skip(i) {
*entry = *entry / divisor;
}
for entry in out[i].iter_mut() {
*entry = *entry / divisor;
}
}
// Finally, we do upside down row reduction
for i in (1..h).rev() {
for j in (0..i).rev() {
let ratio = rows[j][i];
for k in 0..w {
out[j][k] = out[j][k] - out[i][k] * ratio;
}
}
}
Ok(Matrix { entries: out })
} else {
Err("Provided matrix isn't square.")
}
}
// TODO: Canonical forms, eigenvalues, eigenvectors etc.
}
impl<T: Debug + ToMatrix> Display for Matrix<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}", self.entries)
}
}
impl<T: Mul<Output = T> + ToMatrix> Mul for Matrix<T> {
// TODO: Implement a faster algorithm.
type Output = Self;
fn mul(self, other: Self) -> Self::Output {
let width = self.width();
if width != other.height() {
panic!("Row length of first matrix must be same as column length of second matrix.");
} else {
let mut out = Vec::new();
for row in self.rows() {
let mut new_row = Vec::new();
for col in other.columns() {
let mut prod = row[0] * col[0];
for i in 1..width {
prod = prod + (row[i] * col[i]);
}
new_row.push(prod)
}
out.push(new_row);
}
Matrix { entries: out }
}
}
}
impl<T: Mul<Output = T> + ToMatrix> Add for Matrix<T> {
type Output = Self;
fn add(self, other: Self) -> Self::Output {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] + *entry;
}
}
Matrix { entries: out }
} else {
panic!("Both matrices must be of same dimensions.");
}
}
}
impl<T: ToMatrix> Neg for Matrix<T> {
type Output = Self;
fn neg(self) -> Self::Output {
let mut out = self;
for row in &mut out.entries {
for entry in row {
*entry = -*entry;
}
}
out
}
}
impl<T: ToMatrix> Sub for Matrix<T> {
type Output = Self;
fn sub(self, other: Self) -> Self::Output {
if self.height() == other.height() && self.width() == other.width() {
self + -other
} else {
panic!("Both matrices must be of same dimensions.");
}
}
}
/// Trait for conversion between matrices of different types.
/// It only has a [`matrix_into()`](Self::matrix_into()) method.
/// This is needed since negative trait bound are not supported in stable Rust
/// yet, so we'll have a conflict trying to implement [`From`].
/// I plan to change this to the default From trait as soon as some sort
/// of specialization system is implemented.
/// You can track this issue [here](https://github.com/rust-lang/rust/issues/42721).
pub trait MatrixInto<T: ToMatrix> {
/// Method for converting a matrix into a matrix of type [`Matrix<T>`].
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// use matrix_basic::MatrixInto;
///
/// let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
/// let b = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// let c: Matrix<f64> = a.matrix_into(); // Type annotation is needed here
///
/// assert_eq!(c, b);
/// ```
fn matrix_into(self) -> Matrix<T>;
}
/// Blanket implementation of [`MatrixInto`] for converting [`Matrix<S>`] to [`Matrix<T>`] whenever
/// `S` implements [`Into(T)`]. Look at [`matrix_into`](Self::matrix_into()).
impl<T: ToMatrix, S: ToMatrix + Into<T>> MatrixInto<T> for Matrix<S> {
fn matrix_into(self) -> Matrix<T> {
let mut out = Vec::new();
for row in self.entries {
let mut new_row: Vec<T> = Vec::new();
for entry in row {
new_row.push(entry.into());
}
out.push(new_row)
}
Matrix { entries: out }
}
}
/// Sister trait of [`MatrixInto`]. Basically does the same thing, just with a
/// different syntax.
pub trait MatrixFrom<T> {
/// Method for getting a matrix from another matrix of type [`Matrix<T>`].
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// use matrix_basic::MatrixFrom;
///
/// let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
/// let b = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// let c = Matrix::<f64>::matrix_from(a); // Type annotation is needed here
///
/// assert_eq!(c, b);
/// ```
fn matrix_from(input: T) -> Self;
}
/// Blanket implementation of [`MatrixFrom`] for [`Matrix<S>`] whenever `T` (which is actually some)[`Matrix<U>`] implements
/// [`MatrixInto<S>`].
impl<T: MatrixInto<S>, S: ToMatrix> MatrixFrom<T> for Matrix<S> {
fn matrix_from(input: T) -> Self {
let out: Matrix<S> = input.matrix_into();
out
}
}