1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//! This is a crate for very basic matrix operations
//! with any type that supports addition, substraction,
//! and multiplication. Additional properties might be
//! needed for certain operations.
//! I created it mostly to learn using generic types
//! and traits.
//!
//! Sayantan Santra (2023)

use num::{
    traits::{One, Zero},
    Integer,
};
use std::{
    fmt::{self, Debug, Display, Formatter},
    ops::{Add, Div, Mul, Sub},
    result::Result,
};

mod tests;

/// A generic matrix struct (over any type with addition, substraction
/// and multiplication defined on it).
/// Look at [`from`](Self::from()) to see examples.
#[derive(PartialEq, Debug, Clone)]
pub struct Matrix<T: Mul + Add + Sub> {
    entries: Vec<Vec<T>>,
}

impl<T: Mul + Add + Sub> Matrix<T> {
    /// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
    /// It'll throw an error if all the given rows aren't of the same size.
    /// # Example
    /// ```
    /// use matrix_basic::Matrix;
    /// let m = Matrix::from(vec![vec![1,2,3], vec![4,5,6]]);
    /// ```
    /// will create the following matrix:  
    /// ⌈1,2,3⌉  
    /// ⌊4,5,6⌋
    pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, &'static str> {
        let mut equal_rows = true;
        let row_len = entries[0].len();
        for row in &entries {
            if row_len != row.len() {
                equal_rows = false;
                break;
            }
        }
        if equal_rows {
            Ok(Matrix { entries })
        } else {
            Err("Unequal rows.")
        }
    }

    /// Return the height of a matrix.
    pub fn height(&self) -> usize {
        self.entries.len()
    }

    /// Return the width of a matrix.
    pub fn width(&self) -> usize {
        self.entries[0].len()
    }

    /// Return the transpose of a matrix.
    pub fn transpose(&self) -> Self
    where
        T: Copy,
    {
        let mut out = Vec::new();
        for i in 0..self.width() {
            let mut column = Vec::new();
            for row in &self.entries {
                column.push(row[i]);
            }
            out.push(column)
        }
        Matrix { entries: out }
    }

    /// Return a reference to the rows of a matrix as `&Vec<Vec<T>>`.
    pub fn rows(&self) -> &Vec<Vec<T>> {
        &self.entries
    }

    /// Return the columns of a matrix as `Vec<Vec<T>>`.
    pub fn columns(&self) -> Vec<Vec<T>>
    where
        T: Copy,
    {
        self.transpose().entries
    }

    /// Return true if a matrix is square and false otherwise.
    pub fn is_square(&self) -> bool {
        self.height() == self.width()
    }

    /// Return a matrix after removing the provided row and column from it.
    /// Note: Row and column numbers are 0-indexed.
    /// # Example
    /// ```
    /// use matrix_basic::Matrix;
    /// let m = Matrix::from(vec![vec![1,2,3],vec![4,5,6]]).unwrap();
    /// let n = Matrix::from(vec![vec![5,6]]).unwrap();
    /// assert_eq!(m.submatrix(0,0),n);
    /// ```
    pub fn submatrix(&self, row: usize, col: usize) -> Self
    where
        T: Copy,
    {
        let mut out = Vec::new();
        for (m, row_iter) in self.entries.iter().enumerate() {
            if m == row {
                continue;
            }
            let mut new_row = Vec::new();
            for (n, entry) in row_iter.iter().enumerate() {
                if n != col {
                    new_row.push(*entry);
                }
            }
            out.push(new_row);
        }
        Matrix { entries: out }
    }

    /// Return the determinant of a square matrix. This method additionally requires [`Zero`],
    /// [`One`] and [`Copy`] traits. Also, we need that the [`Mul`] and [`Add`] operations
    /// return the same type `T`. This uses basic recursive algorithm using cofactor-minor.
    /// See [`det_in_field`](Self::det_in_field()) for faster determinant calculation in fields.
    /// It'll throw an error if the provided matrix isn't square.
    /// # Example
    /// ```
    /// use matrix_basic::Matrix;
    /// let m = Matrix::from(vec![vec![1,2],vec![3,4]]).unwrap();
    /// assert_eq!(m.det(),Ok(-2));
    /// ```
    pub fn det(&self) -> Result<T, &'static str>
    where
        T: Copy,
        T: Mul<Output = T>,
        T: Sub<Output = T>,
        T: Zero,
    {
        if self.is_square() {
            // It's a recursive algorithm using minors.
            // TODO: Implement a faster algorithm.
            let out = if self.width() == 1 {
                self.entries[0][0]
            } else {
                // Add the minors multiplied by cofactors.
                let n = 0..self.width();
                let mut out = T::zero();
                for i in n {
                    if i.is_even() {
                        out = out + (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
                    } else {
                        out = out - (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
                    }
                }
                out
            };
            Ok(out)
        } else {
            Err("Provided matrix isn't square.")
        }
    }

    /// Return the determinant of a square matrix over a field i.e. needs [`One`] and [`Div`] traits.
    /// See [`det`](Self::det()) for determinants in rings.
    /// This method uses row reduction as is much faster.
    /// It'll throw an error if the provided matrix isn't square.
    /// # Example
    /// ```
    /// use matrix_basic::Matrix;
    /// let m = Matrix::from(vec![vec![1.0,2.0],vec![3.0,4.0]]).unwrap();
    /// assert_eq!(m.det(),Ok(-2.0));
    /// ```
    pub fn det_in_field(&self) -> Result<T, &'static str>
    where
        T: Copy,
        T: Mul<Output = T>,
        T: Sub<Output = T>,
        T: Zero,
        T: One,
        T: PartialEq,
        T: Div<Output = T>,
    {
        if self.is_square() {
            // Cloning is necessary as we'll be doing row operations on it.
            let mut rows = self.entries.clone();
            let mut multiplier = T::one();
            let h = self.height();
            let w = self.width();
            for i in 0..h {
                // First check if the row has diagonal element 0, if yes, then swap.
                if rows[i][i] == T::zero() {
                    let mut zero_column = true;
                    for j in (i + 1)..h {
                        if rows[j][i] != T::zero() {
                            rows.swap(i, j);
                            multiplier = T::zero() - multiplier;
                            zero_column = false;
                            break;
                        }
                    }
                    if zero_column {
                        return Ok(T::zero());
                    }
                }
                for j in (i + 1)..h {
                    let ratio = rows[j][i] / rows[i][i];
                    for k in i..w {
                        rows[j][k] = rows[j][k] - rows[i][k] * ratio;
                    }
                }
            }
            for (i, row) in rows.iter().enumerate() {
                multiplier = multiplier * row[i];
            }
            Ok(multiplier)
        } else {
            Err("Provided matrix isn't square.")
        }
    }

    /// Returns the row echelon form of a matrix over a field i.e. needs [`One`] and [`Div`] traits.
    /// # Example
    /// ```
    /// use matrix_basic::Matrix;
    /// let m = Matrix::from(vec![vec![1.0,2.0,3.0],vec![3.0,4.0,5.0]]).unwrap();
    /// let n = Matrix::from(vec![vec![1.0,2.0,3.0], vec![0.0,-2.0,-4.0]]).unwrap();
    /// assert_eq!(m.row_echelon(),n);
    /// ```
    pub fn row_echelon(&self) -> Self
    where
        T: Copy,
        T: Mul<Output = T>,
        T: Sub<Output = T>,
        T: Zero,
        T: One,
        T: PartialEq,
        T: Div<Output = T>,
    {
        // Cloning is necessary as we'll be doing row operations on it.
        let mut rows = self.entries.clone();
        let mut offset = 0;
        let h = self.height();
        let w = self.width();
        for i in 0..h {
            // Check if all the rows below are 0
            if i + offset >= self.width() {
                break;
            }
            // First check if the row has diagonal element 0, if yes, then swap.
            if rows[i][i + offset] == T::zero() {
                let mut zero_column = true;
                for j in (i + 1)..h {
                    if rows[j][i + offset] != T::zero() {
                        rows.swap(i, j);
                        zero_column = false;
                        break;
                    }
                }
                if zero_column {
                    offset += 1;
                }
            }
            for j in (i + 1)..h {
                let ratio = rows[j][i + offset] / rows[i][i + offset];
                for k in (i + offset)..w {
                    rows[j][k] = rows[j][k] - rows[i][k] * ratio;
                }
            }
        }
        Matrix { entries: rows }
    }

    /// Returns the column echelon form of a matrix over a field i.e. needs [`One`] and [`Div`] traits.
    /// It's just the transpose of the row echelon form of the transpose.
    /// See [`row_echelon`](Self::row_echelon()) and [`transpose`](Self::transpose()).
    pub fn column_echelon(&self) -> Self
    where
        T: Copy,
        T: Mul<Output = T>,
        T: Sub<Output = T>,
        T: Zero,
        T: One,
        T: PartialEq,
        T: Div<Output = T>,
    {
        self.transpose().row_echelon().transpose()
    }

    /// Returns the reduced row echelon form of a matrix over a field i.e. needs [`One`] and [`Div`] traits.
    /// # Example
    /// ```
    /// use matrix_basic::Matrix;
    /// let m = Matrix::from(vec![vec![1.0,2.0,3.0],vec![3.0,4.0,5.0]]).unwrap();
    /// let n = Matrix::from(vec![vec![1.0,2.0,3.0], vec![0.0,1.0,2.0]]).unwrap();
    /// assert_eq!(m.reduced_row_echelon(),n);
    /// ```
    pub fn reduced_row_echelon(&self) -> Self
    where
        T: Copy,
        T: Mul<Output = T>,
        T: Sub<Output = T>,
        T: Zero,
        T: One,
        T: PartialEq,
        T: Div<Output = T>,
        T: Display,
        T: Debug,
    {
        let mut echelon = self.row_echelon();
        let mut offset = 0;
        for row in &mut echelon.entries {
            while row[offset] == T::zero() {
                offset += 1;
            }
            let divisor = row[offset];
            for entry in row.iter_mut().skip(offset) {
                *entry = *entry / divisor;
            }
            offset += 1;
        }
        echelon
    }

    /// Creates a zero matrix of a given size.
    pub fn zero(height: usize, width: usize) -> Self
    where
        T: Zero,
    {
        let mut out = Vec::new();
        for _ in 0..height {
            let mut new_row = Vec::new();
            for _ in 0..width {
                new_row.push(T::zero());
            }
            out.push(new_row);
        }
        Matrix { entries: out }
    }

    /// Creates an identity matrix of a given size.
    pub fn identity(size: usize) -> Self
    where
        T: Zero,
        T: One,
    {
        let mut out = Vec::new();
        for i in 0..size {
            let mut new_row = Vec::new();
            for j in 0..size {
                if i == j {
                    new_row.push(T::one());
                } else {
                    new_row.push(T::zero());
                }
            }
            out.push(new_row);
        }
        Matrix { entries: out }
    }

    // TODO: Canonical forms, eigenvalues, eigenvectors etc.
}

impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{:?}", self.entries)
    }
}

impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
    // TODO: Implement a faster algorithm.
    type Output = Self;
    fn mul(self, other: Self) -> Self {
        let width = self.width();
        if width != other.height() {
            panic!("Row length of first matrix must be same as column length of second matrix.");
        } else {
            let mut out = Vec::new();
            for row in self.rows() {
                let mut new_row = Vec::new();
                for col in other.columns() {
                    let mut prod = row[0] * col[0];
                    for i in 1..width {
                        prod = prod + (row[i] * col[i]);
                    }
                    new_row.push(prod)
                }
                out.push(new_row);
            }
            Matrix { entries: out }
        }
    }
}

impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
    type Output = Self;
    fn add(self, other: Self) -> Self {
        if self.height() == other.height() && self.width() == other.width() {
            let mut out = self.entries.clone();
            for (i, row) in self.rows().iter().enumerate() {
                for (j, entry) in other.rows()[i].iter().enumerate() {
                    out[i][j] = row[j] + *entry;
                }
            }
            Matrix { entries: out }
        } else {
            panic!("Both matrices must be of same dimensions.");
        }
    }
}

impl<T: Add + Sub<Output = T> + Mul + Copy + Zero> Sub for Matrix<T> {
    type Output = Self;
    fn sub(self, other: Self) -> Self {
        if self.height() == other.height() && self.width() == other.width() {
            let mut out = self.entries.clone();
            for (i, row) in self.rows().iter().enumerate() {
                for (j, entry) in other.rows()[i].iter().enumerate() {
                    out[i][j] = row[j] - *entry;
                }
            }
            Matrix { entries: out }
        } else {
            panic!("Both matrices must be of same dimensions.");
        }
    }
}