1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
//! This is a crate for very basic matrix operations
//! with any type that supports addition, substraction,
//! and multiplication. Additional properties might be
//! needed for certain operations.
//! I created it mostly to learn using generic types
//! and traits.
//!
//! Sayantan Santra (2023)
use num::{
traits::{One, Zero},
Integer,
};
use std::{
fmt::{self, Debug, Display, Formatter},
ops::{Add, Mul, Sub},
result::Result,
};
mod tests;
/// A generic matrix struct (over any type with addition, substraction
/// and multiplication defined on it).
/// Look at [`from`](Self::from()) to see examples.
#[derive(PartialEq, Debug, Clone)]
pub struct Matrix<T: Mul + Add + Sub> {
entries: Vec<Vec<T>>,
}
impl<T: Mul + Add + Sub> Matrix<T> {
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
/// It'll throw an error if all the given rows aren't of the same size.
/// # Example
/// ```
/// use matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2,3], vec![4,5,6]]);
/// ```
/// will create the following matrix:
/// ⌈1,2,3⌉
/// ⌊4,5,6⌋
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, &'static str> {
let mut equal_rows = true;
let row_len = entries[0].len();
for row in &entries {
if row_len != row.len() {
equal_rows = false;
break;
}
}
if equal_rows {
Ok(Matrix { entries })
} else {
Err("Unequal rows.")
}
}
/// Return the height of a matrix.
pub fn height(&self) -> usize {
self.entries.len()
}
/// Return the width of a matrix.
pub fn width(&self) -> usize {
self.entries[0].len()
}
/// Return the transpose of a matrix.
pub fn transpose(&self) -> Self
where
T: Copy,
{
let mut out = Vec::new();
for i in 0..self.width() {
let mut column = Vec::new();
for row in &self.entries {
column.push(row[i]);
}
out.push(column)
}
Matrix { entries: out }
}
/// Return a reference to the rows of a matrix as `&Vec<Vec<T>>`.
pub fn rows(&self) -> &Vec<Vec<T>> {
&self.entries
}
/// Return the columns of a matrix as `Vec<Vec<T>>`.
pub fn columns(&self) -> Vec<Vec<T>>
where
T: Copy,
{
self.transpose().entries
}
/// Return true if a matrix is square and false otherwise.
pub fn is_square(&self) -> bool {
self.height() == self.width()
}
/// Return a matrix after removing the provided row and column from it.
/// Note: Row and column numbers are 0-indexed.
/// # Example
/// ```
/// use matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2,3],vec![4,5,6]]).unwrap();
/// let n = Matrix::from(vec![vec![5,6]]).unwrap();
/// assert_eq!(m.submatrix(0,0),n);
/// ```
pub fn submatrix(&self, row: usize, col: usize) -> Self
where
T: Copy,
{
let mut out = Vec::new();
for (m, row_iter) in self.entries.iter().enumerate() {
if m == row {
continue;
}
let mut new_row = Vec::new();
for (n, entry) in row_iter.iter().enumerate() {
if n != col {
new_row.push(*entry);
}
}
out.push(new_row);
}
Matrix { entries: out }
}
/// Return the determinant of a square matrix. This method additionally requires [`Zero`],
/// [`One`] and [`Copy`] traits. Also, we need that the [`Mul`] and [`Add`] operations
/// return the same type `T`.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2],vec![3,4]]).unwrap();
/// assert_eq!(m.det(),Ok(-2));
/// ```
pub fn det(&self) -> Result<T, &'static str>
where
T: Copy,
T: Mul<Output = T>,
T: Sub<Output = T>,
T: Zero,
{
if self.is_square() {
// It's a recursive algorithm using minors.
// TODO: Implement a faster algorithm. Maybe use row reduction for fields.
let out = if self.width() == 1 {
self.entries[0][0]
} else {
// Add the minors multiplied by cofactors.
let n = 0..self.width();
let mut out = T::zero();
for i in n {
if i.is_even() {
out = out + (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
} else {
out = out - (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
}
}
out
};
Ok(out)
} else {
Err("Provided matrix isn't square.")
}
}
/// Creates a zero matrix of a given size.
pub fn zero(height: usize, width: usize) -> Self
where
T: Zero,
{
let mut out = Vec::new();
for _ in 0..height {
let mut new_row = Vec::new();
for _ in 0..width {
new_row.push(T::zero());
}
out.push(new_row);
}
Matrix { entries: out }
}
/// Creates an identity matrix of a given size.
pub fn identity(size: usize) -> Self
where
T: Zero,
T: One,
{
let mut out = Vec::new();
for i in 0..size {
let mut new_row = Vec::new();
for j in 0..size {
if i == j {
new_row.push(T::one());
} else {
new_row.push(T::zero());
}
}
out.push(new_row);
}
Matrix { entries: out }
}
}
impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}", self.entries)
}
}
impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
// TODO: Implement a faster algorithm. Maybe use row reduction for fields.
type Output = Self;
fn mul(self, other: Self) -> Self {
let width = self.width();
if width != other.height() {
panic!("Row length of first matrix must be same as column length of second matrix.");
} else {
let mut out = Vec::new();
for row in self.rows() {
let mut new_row = Vec::new();
for col in other.columns() {
let mut prod = row[0] * col[0];
for i in 1..width {
prod = prod + (row[i] * col[i]);
}
new_row.push(prod)
}
out.push(new_row);
}
Matrix { entries: out }
}
}
}
impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
type Output = Self;
fn add(self, other: Self) -> Self {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] + *entry;
}
}
Matrix { entries: out }
} else {
panic!("Both matrices must be of same dimensions.");
}
}
}
impl<T: Add + Sub<Output = T> + Mul + Copy + Zero> Sub for Matrix<T> {
type Output = Self;
fn sub(self, other: Self) -> Self {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] - *entry;
}
}
Matrix { entries: out }
} else {
panic!("Both matrices must be of same dimensions.");
}
}
}